100+ datasets found
  1. Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction –...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-United-States-COVID-19-Hospitalization-Metr/7dk4-g6vg
    Explore at:
    application/rssxml, json, csv, xml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020.
    • Cumulative COVID-19 Hospital Admissions Rate: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020 divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
    • New COVID-19 Hospital Admissions Rate (7-day average) percent change from prior week: Percent change in the 7-day average new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week.
    • New COVID-19 Hospital Admissions (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions Rate (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
    • Total Hospitalized COVID-19 Patients: 7-day total number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
    • Total Hospitalized COVID-19 Patients (7-Day Average): 7-day average of the number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the entire jurisdiction is calculated as an average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the 7-day average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past 7 days, compared with the prior week, in the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as a 7-day average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past 7 days, compared with the prior week, in the in the entire jurisdiction.

    Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.

    October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.

    December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.

    January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.

  2. COVID-19 Reported Patient Impact and Hospital Capacity by Facility

    • healthdata.gov
    • data.ct.gov
    • +2more
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). COVID-19 Reported Patient Impact and Hospital Capacity by Facility [Dataset]. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
    Explore at:
    tsv, application/rssxml, csv, xml, application/rdfxml, application/geo+json, kmz, kmlAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.

    The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

    For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.

    Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

    • A “_coverage” append denotes how many times the facility reported that element during that collection week.
    • A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week.
    • A “_avg” append is the average of the reports provided for that facility for that element during that collection week.

    The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

    A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv

    This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

    Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

    For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.

    For recent updates to the dataset, scroll to the bottom of the dataset description.

    On May 3, 2021, the following fields have been added to this data set.

    • hhs_ids
    • previous_day_admission_adult_covid_confirmed_7_day_coverage
    • previous_day_admission_pediatric_covid_confirmed_7_day_coverage
    • previous_day_admission_adult_covid_suspected_7_day_coverage
    • previous_day_admission_pediatric_covid_suspected_7_day_coverage
    • previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum
    • total_personnel_covid_vaccinated_doses_none_7_day_sum
    • total_personnel_covid_vaccinated_doses_one_7_day_sum
    • total_personnel_covid_vaccinated_doses_all_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_one_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_all_7_day_sum

    On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.

    On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.

    On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.

    On September 20, 2021, the following has been updated: The use of analytic dataset as a source.

    On January 19, 2022, the following fields have been added to this dataset:

    • inpatient_beds_used_covid_7_day_avg
    • inpatient_beds_used_covid_7_day_sum
    • inpatient_beds_used_covid_7_day_coverage

    On April 28, 2022, the following pediatric fields have been added to this dataset:

    • all_pediatric_inpatient_bed_occupied_7_day_avg
    • all_pediatric_inpatient_bed_occupied_7_day_coverage
    • all_pediatric_inpatient_bed_occupied_7_day_sum
    • all_pediatric_inpatient_beds_7_day_avg
    • all_pediatric_inpatient_beds_7_day_coverage
    • all_pediatric_inpatient_beds_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_0_4_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_12_17_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_5_11_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_unknown_7_day_sum
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_avg
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_coverage
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_sum
    • staffed_pediatric_icu_bed_occupancy_7_day_avg
    • staffed_pediatric_icu_bed_occupancy_7_day_coverage
    • staffed_pediatric_icu_bed_occupancy_7_day_sum
    • total_staffed_pediatric_icu_beds_7_day_avg
    • total_staffed_pediatric_icu_beds_7_day_coverage
    • total_staffed_pediatric_icu_beds_7_day_sum

    On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb

    Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.

  3. COVID-19 Hospital Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Hospital Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-hospital-data
    Explore at:
    csv(3296422), zipAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset is not being updated as hospitals are no longer mandated to report COVID Hospitalizations to CDPH.

    Data is from the California COVID-19 State Dashboard at https://covid19.ca.gov/state-dashboard/

    Note: Hospitalization counts include all patients diagnosed with COVID-19 during their stay. This does not necessarily mean they were hospitalized because of COVID-19 complications or that they experienced COVID-19 symptoms.

    Note: Cumulative totals are not available due to the fact that hospitals report the total number of patients each day (as opposed to new patients).

  4. Number of available hospital beds per 1,000 people in the United States...

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of available hospital beds per 1,000 people in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/1074/hospitals/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The average number of hospital beds available per 1,000 people in the United States was forecast to continuously decrease between 2024 and 2029 by in total 0.1 beds (-3.7 percent). After the eighth consecutive decreasing year, the number of available beds per 1,000 people is estimated to reach 2.63 beds and therefore a new minimum in 2029. Depicted is the number of hospital beds per capita in the country or region at hand. As defined by World Bank this includes inpatient beds in general, specialized, public and private hospitals as well as rehabilitation centers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the average number of hospital beds available per 1,000 people in countries like Canada and Mexico.

  5. d

    DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC...

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC hospitals for Covid-19 like Illness [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-milestone-data-daily-number-of-people-admitted-to-nyc-hospitals-for-covid-1
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    This dataset shows the number of hospital admissions for influenza-like illness, pneumonia, or include ICD-10-CM code (U07.1) for 2019 novel coronavirus. Influenza-like illness is defined as a mention of either: fever and cough, fever and sore throat, fever and shortness of breath or difficulty breathing, or influenza. Patients whose ICD-10-CM code was subsequently assigned with only an ICD-10-CM code for influenza are excluded. Pneumonia is defined as mention or diagnosis of pneumonia. Baseline data represents the average number of people with COVID-19-like illness who are admitted to the hospital during this time of year based on historical counts. The average is based on the daily avg from the rolling same week (same day +/- 3 days) from the prior 3 years. Percent change data represents the change in count of people admitted compared to the previous day. Data sources include all hospital admissions from emergency department visits in NYC. Data are collected electronically and transmitted to the NYC Health Department hourly. This dataset is updated daily. All identifying health information is excluded from the dataset.

  6. h

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes...

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/139
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  7. Number of hospitals in the United States 2014-2029

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of hospitals in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/1074/hospitals/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.

  8. U

    United States US: Hospital Beds: per 1000 People

    • ceicdata.com
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United States US: Hospital Beds: per 1000 People [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-hospital-beds-per-1000-people
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1999 - Dec 1, 2011
    Area covered
    United States
    Description

    United States US: Hospital Beds: per 1000 People data was reported at 2.900 Number in 2011. This records a decrease from the previous number of 3.000 Number for 2010. United States US: Hospital Beds: per 1000 People data is updated yearly, averaging 5.000 Number from Dec 1960 (Median) to 2011, with 43 observations. The data reached an all-time high of 9.200 Number in 1960 and a record low of 2.900 Number in 2011. United States US: Hospital Beds: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Hospital beds include inpatient beds available in public, private, general, and specialized hospitals and rehabilitation centers. In most cases beds for both acute and chronic care are included.; ; Data are from the World Health Organization, supplemented by country data.; Weighted average;

  9. d

    COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-hospitalizations-and-deaths-by-county
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d

  10. C

    COVID-19 Patient Data

    • data.chhs.ca.gov
    • data.ca.gov
    csv, zip
    Updated Feb 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of State Hospitals (2025). COVID-19 Patient Data [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-patient-data
    Explore at:
    csv(526), zipAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Department of State Hospitals
    Description

    DSH COVID-19 Patient Testing: Last updated -02/10/2025

    DSH COVID-19 Patient Data reports on patient positives and testing counts at the facility level for DSH. The table reports on the following data fields:

    • Total patients that tested positive for COVID-19 since 5/16/2020

    • Patients newly positive for COVID-19 in the last 14 days

    • Patient deaths while patient was positive for COVID-19 since 5/30/2020

    • Total number of tests administered since 3/23/2020

    Table Notes:

    COVID-19 test results for patients include DSH patients who are tested while receiving treatment at an outside medical facility. Data has been de-identified in accordance with CalHHS Data De-identification Guidelines. Counts between 1-10 are masked with "<11". Includes Patients Under Investigation (PUIs) testing and proactive testing of asymptomatic patients for surveillance of geriatric, medically fragile, and skilled nursing facility units and for patients upon admission, re-admission, or discharge. Includes all individuals who were positive for COVID-19 at time of death, regardless of underlying health conditions or whether the cause of death has been confirmed to be COVID-19 related illness. Metro-Norwalk is additional COVID-19 surge space and technically a branch location that is part of DSH Metropolitan Hospital.

  11. Number of hospital beds in the United States 2014-2029

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of hospital beds in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/1074/hospitals/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of hospital beds in the United States was forecast to continuously increase between 2024 and 2029 by in total 16.6 thousand beds (+1.75 percent). After the fifteenth consecutive increasing year, the number of hospital beds is estimated to reach 967.9 thousand beds and therefore a new peak in 2029. Notably, the number of hospital beds of was continuously increasing over the past years.Depicted is the estimated total number of hospital beds in the country or region at hand.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospital beds in countries like Mexico and Canada.

  12. o

    Health, lifestyle, health care use and supply, causes of death; key figures

    • data.overheid.nl
    • ckan.mobidatalab.eu
    • +3more
    atom, json
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2024). Health, lifestyle, health care use and supply, causes of death; key figures [Dataset]. https://data.overheid.nl/dataset/4268-health--lifestyle--health-care-use-and-supply--causes-of-death--key-figures
    Explore at:
    atom(KB), json(KB)Available download formats
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Centraal Bureau voor de Statistiek (Rijk)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table provides an overview of the key figures on health and care available on StatLine. All figures are taken from other tables on StatLine, either directly or through a simple conversion. In the original tables, breakdowns by characteristics of individuals or other variables are possible. The period after the year of review before data become available differs between the data series. The number of exam passes/graduates in year t is the number of persons who obtained a diploma in school/study year starting in t-1 and ending in t.

    Data available from: 2001

    Status of the figures: 2024: The available figures are definite. 2023: Most available figures are definite Figures are provisional for: - perinatal mortality at pregnancy duration at least 24 weeks; - diagnoses known to the general practitioner; - supplied drugs; - AWBZ/Wlz-funded long term care; - persons employed in health and welfare; - persons employed in healthcare; - Mbo health care graduates; - Hbo nursing graduates / medicine graduates (university); - expenditures on health and welfare; - average distance to facilities. 2022: Most available figures are definite, figures are provisional for: - hospital admissions by some diagnoses; - physicians and nurses employed in care; - persons employed in health and welfare; - persons employed in healthcare; - expenditures on health and welfare; - profitability and operating results at institutions. 2021: Most available figures are definite, figures are provisional for: - expenditures on health and welfare. 2020 and earlier: All available figures are definite.

    Changes as of 18 december 2024: - Distance to facilities: the figures withdrawn on 5 June have been replaced (unchanged). - Youth care: the previously published final results for 2021 and 2022 have been adjusted due to improvements in the processing. - Due to a revision of the statistics Expenditure on health and welfare 2021, figures for expenditure on health and welfare care have been replaced from 2021 onwards. - Due to the revision of the National Accounts, the figures on persons employed in health and welfare have been replaced for all years. - AWBZ/Wlz-funded long term care: from 2015, the series Wlz residential care including total package at home has been replaced by total Wlz care. This series fits better with the chosen demarcation of indications for Wlz care.

    More recent figures have been added for: - crude birth rate; - live births to teenage mothers; - causes of death; - perinatal mortality at pregnancy duration at least 24 weeks; - life expectancy in perceived good health; - diagnoses known to the general practitioner; - supplied drugs; - AWBZ/Wlz-funded long term care; - youth care; - persons employed in health and welfare; - persons employed in healthcare; - expenditures on health and welfare; - average distance to facilities.

    When will new figures be published? New figures will be published in July 2025.

  13. d

    Learning Disability Services Monthly Statistics, AT: March 2024, MHSDS:...

    • digital.nhs.uk
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Learning Disability Services Monthly Statistics, AT: March 2024, MHSDS: February 2024 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/learning-disability-services-statistics
    Explore at:
    Dataset updated
    Mar 1, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Mar 1, 2024 - Mar 31, 2024
    Description

    Latest monthly statistics on Learning Disabilities and Autism (LDA) patients from the Assuring Transformation (AT) collection and Mental Health Services Data Set (MHSDS). Data on inpatients with learning disabilities and/or autism are being collected both within the AT collection and MHSDS. There are differences in the inpatient figures between the AT and MHSDS data sets and work has been ongoing to better understand these. LDA data from MHSDS are experimental statistics, however, while impacts from the cyber incident are still present they will be considered to be management information. From October 2021, LDA MHSDS data has been collected under MHSDS version 5. A number of comparators are published each month to assess the differences in reporting between the collections. These can be found in the MHSDS datasets section. From 1 July 2022, Integrated Care Boards were established within Integrated Care Systems data and replaced Sustainability and Transformation Plans (STPs). Clinical Commissioning Groups have been replaced by sub-Integrated Care Boards. Data for the AT collection is now submitted by sub-Integrated Care Boards. This has resulted in some renaming within tables and the inclusion of a new Table 5.1b with a patient breakdown by submitting organisation. Patients by originating organisation and commissioning type are still available in Table 5.1a. Data in the tables are now presented by the current organisational structures. Old organisational structures have been mapped to new structures in any time series. As of 23rd May 2024, restraints data for MHSDS February 2024 has been added to the 'Learning disability services monthly statistics from MHSDS: Data tables' page. This is available within Tables 15-18 of v2 of the Data tables as well as within v2 of the csv file.

  14. Hospital Annual Utilization Report & Pivot Tables

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    aspx, csv, docx, html +3
    Updated Nov 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Hospital Annual Utilization Report & Pivot Tables [Dataset]. https://data.chhs.ca.gov/dataset/hospital-annual-utilization-report
    Explore at:
    pdf(368791), xlsx, pdf(972079), xlsx(1108403), xlsx(915800), pdf, xlsx(657042), zip, xlsx(1116716), pdf(301252), aspx, pdf(358211), xlsx(607287), xlsx(586048), pdf(383225), pdf(293988), xlsx(1073059), xlsx(605638), xlsx(1107998), pdf(380270), xlsx(602836), html, pdf(386430), xlsx(637002), pdf(536270), pdf(682851), xlsx(1080890), pdf(302833), pdf(294518), xlsx(598028), pdf(532200), csv(108533621), pdf(315089), docxAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description

    The complete data set of annual utilization data reported by hospitals contains basic licensing information including bed classifications; patient demographics including occupancy rates, the number of discharges and patient days by bed classification, and the number of live births; as well as information on the type of services provided including the number of surgical operating rooms, number of surgeries performed (both inpatient and outpatient), the number of cardiovascular procedures performed, and licensed emergency medical services provided.

  15. D

    Covid ICU hospitalizations by day

    • data.sfgov.org
    application/rdfxml +5
    Updated May 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health - Population Health Division (2024). Covid ICU hospitalizations by day [Dataset]. https://data.sfgov.org/COVID-19/Covid-ICU-hospitalizations-by-day/qyxj-n4pm
    Explore at:
    application/rdfxml, csv, xml, json, application/rssxml, tsvAvailable download formats
    Dataset updated
    May 1, 2024
    Authors
    Department of Public Health - Population Health Division
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY Count of COVID+ patients admitted to the hospital. Patients who are hospitalized and test positive for COVID-19 may be admitted to an acute care bed (a regular hospital bed), or an intensive care unit (ICU) bed. This data shows the daily total count of COVID+ patients in these two bed types, and the data reflects totals from all San Francisco Hospitals.

    B. HOW THE DATASET IS CREATED Hospital information is based on admission data reported to the San Francisco Department of Public Health.

    C. UPDATE PROCESS Updated daily, dataset uploaded manually by staff

    D. HOW TO USE THIS DATASET Each record represents how many people were hospitalized on the date recorded in either an ICU bed or acute care bed (shown as Med/Surg under DPHCategory field).

    Data shown here include all San Francisco hospitals and will be updated daily with a two-day lag as information is collected and verified. Data may change as more current information becomes available.

  16. T

    HOSPITAL BEDS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HOSPITAL BEDS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/hospital-beds
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for HOSPITAL BEDS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  17. d

    Compendium - Emergency readmissions to hospital within 30 days of discharge

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Nov 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Compendium - Emergency readmissions to hospital within 30 days of discharge [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-emergency-readmissions/current
    Explore at:
    pdf(335.8 kB), xlsx(14.8 MB), csv(20.8 MB)Available download formats
    Dataset updated
    Nov 26, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2013 - Mar 31, 2024
    Area covered
    England
    Description

    Percentage of emergency admissions to any hospital in England occurring within 30 days of the last, previous discharge from hospital after admission: indirectly standardised by age, sex, method of admission and diagnosis/procedure. The indicator is broken down into the following demographic groups for reporting: ● All years and female only, male only and both male and female (persons). ● <16 years and female only, male only and both male and female (persons). ● 16+ years and female only, male only and both male and female (persons) ● 16-74 years and female only, male only and both male and female (persons) ● 75+ years and female only, male only and both male and female (persons) Results for each of these groups are also split by the following geographical and demographic breakdowns: ● Local authority of residence. ● Region. ● Area classification. ● NHS and private providers. ● NHS England regions. ● Deprivation (Index of Multiple Deprivation (IMD) Quintiles, 2019). ● Sustainability and Transformation Partnerships (STP) & Integrated Care Boards (ICB) from 2016/17. ● Clinical Commissioning Groups (CCG) & sub-Integrated Care Boards (sub-ICB). All annual trends are indirectly standardised against 2013/14.

  18. Data from: THE RELEVANCY OF MASSIVE HEALTH EDUCATION IN THE BRAZILIAN PRISON...

    • zenodo.org
    csv, pdf
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Janaína L. R. da S. Valentim; Janaína L. R. da S. Valentim; Sara Dias-Trindade; Sara Dias-Trindade; Eloiza da S. G. Oliveira; Eloiza da S. G. Oliveira; José A. M. Moreira; José A. M. Moreira; Felipe Fernandes; Felipe Fernandes; Manoel Honorio Romão; Manoel Honorio Romão; Philippi S. G. de Morais; Philippi S. G. de Morais; Alexandre R. Caitano; Alexandre R. Caitano; Aline P. Dias; Aline P. Dias; Carlos A. P. Oliveira; Carlos A. P. Oliveira; Karilany D. Coutinho; Karilany D. Coutinho; Ricardo B. Ceccim; Ricardo B. Ceccim; Ricardo A. de M. Valentim; Ricardo A. de M. Valentim (2024). THE RELEVANCY OF MASSIVE HEALTH EDUCATION IN THE BRAZILIAN PRISON SYSTEM: THE COURSE "HEALTH CARE FOR PEOPLE DEPRIVED OF FREEDOM" AND ITS IMPACTS [Dataset]. http://doi.org/10.5281/zenodo.6499752
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Janaína L. R. da S. Valentim; Janaína L. R. da S. Valentim; Sara Dias-Trindade; Sara Dias-Trindade; Eloiza da S. G. Oliveira; Eloiza da S. G. Oliveira; José A. M. Moreira; José A. M. Moreira; Felipe Fernandes; Felipe Fernandes; Manoel Honorio Romão; Manoel Honorio Romão; Philippi S. G. de Morais; Philippi S. G. de Morais; Alexandre R. Caitano; Alexandre R. Caitano; Aline P. Dias; Aline P. Dias; Carlos A. P. Oliveira; Carlos A. P. Oliveira; Karilany D. Coutinho; Karilany D. Coutinho; Ricardo B. Ceccim; Ricardo B. Ceccim; Ricardo A. de M. Valentim; Ricardo A. de M. Valentim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Dataset name: asppl_dataset_v2.csv

    Version: 2.0

    Dataset period: 06/07/2018 - 01/14/2022

    Dataset Characteristics: Multivalued

    Number of Instances: 8118

    Number of Attributes: 9

    Missing Values: Yes

    Area(s): Health and education

    Sources:

    • Virtual Learning Environment of the Brazilian Health System (AVASUS) (Brasil, 2022a);

    • Brazilian Occupational Classification (CBO) (Brasil, 2022b);

    • National Registry of Health Establishments (CNES) (Brasil, 2022c);

    • Brazilian Institute of Geography and Statistics (IBGE) (Brasil, 2022e).

    Description: The data contained in the asppl_dataset_v2.csv dataset (see Table 1) originates from participants of the technology-based educational course “Health Care for People Deprived of Freedom.” The course is available on the AVASUS (Brasil, 2022a). This dataset provides elementary data for analyzing the course’s impact and reach and the profile of its participants. In addition, it brings an update of the data presented in work by Valentim et al. (2021).

    Table 1: Description of AVASUS dataset features.

    Attributes

    Description

    datatype

    Value

    gender

    Gender of the course participant.

    Categorical.

    Feminino / Masculino / Não Informado. (In English, Female, Male or Uninformed)

    course_progress

    Percentage of completion of the course.

    Numerical.

    Range from 0 to 100.

    course_evaluation

    A score given to the course by the participant.

    Numerical.

    0, 1, 2, 3, 4, 5 or NaN.

    evaluation_commentary

    Comment made by the participant about the course.

    Categorical.

    Free text or NaN.

    region

    Brazilian region in which the participant resides.

    Categorical.

    Brazilian region according to IBGE: Norte, Nordeste, Centro-Oeste, Sudeste or Sul (In English North, Northeast, Midwest, Southeast or South).

    CNES

    The CNES code refers to the health establishment where the participant works.

    Numerical.

    CNES Code or NaN.

    health_care_level

    Identification of the health care network level for which the course participant works.

    Categorical.

    “ATENCAO PRIMARIA”,

    “MEDIA COMPLEXIDADE”,

    “ALTA COMPLEXIDADE”,

    and their possible combinations.

    (In English "PRIMARY HEALTH CARE", "SECONDARY HEALTH CARE" AND "TERTIARY HEALTH CARE")

    year_enrollment

    Year in which the course participant registered.

    Numerical.

    Year (YYYY).

    CBO

    Participant occupation.

    Categorical.

    Text coded according to the Brazilian Classification of Occupations or “Indivíduo sem afiliação formal.” (In English “Individual without formal affiliation.”)

    Dataset name: prison_syphilis_and_population_brazil.csv

    Dataset period: 2017 - 2020

    Dataset Characteristics: Multivalued

    Number of Instances: 6

    Number of Attributes: 13

    Missing Values: No

    Source:

    • National Penitentiary Department (DEPEN) (Brasil, 2022d);

    Description: The data contained in the prison_syphilis_and_population_brazil.csv dataset (see Table 2) originate from the National Penitentiary Department Information System (SISDEPEN) (Brasil, 2022d). This dataset provides data on the population and prevalence of syphilis in the Brazilian prison system. In addition, it brings a rate that represents the normalized data for purposes of comparison between the populations of each region and Brazil.

    Table 2: Description of DEPEN dataset Features.

    Attributes

    Description

    datatype

    Value

    Region

    Brazilian region in which the participant resides. In addition, the sum of the regions, which refers to Brazil.

    Categorical.

    Brazil and Brazilian region according to IBGE: North, Northeast, Midwest, Southeast or South.

    syphilis_2017

    Number of syphilis cases in the prison system in 2017.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2017

    Normalized rate of syphilis cases in 2017.

    Numerical.

    Syphilis case rate.

    syphilis_2018

    Number of syphilis cases in the prison system in 2018.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2018

    Normalized rate of syphilis cases in 2018.

    Numerical.

    Syphilis case rate.

    syphilis_2019

    Number of syphilis cases in the prison system in 2019.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2019

    Normalized rate of syphilis cases in 2019.

    Numerical.

    Syphilis case rate.

    syphilis_2020

    Number of syphilis cases in the prison system in 2020.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2020

    Normalized rate of syphilis cases in 2020.

    Numerical.

    Syphilis case rate.

    pop_2017

    Prison population in 2017.

    Numerical.

    Population number.

    pop_2018

    Prison population in 2018.

    Numerical.

    Population number.

    pop_2019

    Prison population in 2019.

    Numerical.

    Population number.

    pop_2020

    Prison population in 2020.

    Numerical.

    Population number.

    Dataset name: students_cumulative_sum.csv

    Dataset period: 2018 - 2020

    Dataset Characteristics: Multivalued

    Number of Instances: 6

    Number of Attributes: 7

    Missing Values: No

    Source:

    • Virtual Learning Environment of the Brazilian Health System (AVASUS) (Brasil, 2022a);

    • Brazilian Institute of Geography and Statistics (IBGE) (Brasil, 2022e).

    Description: The data contained in the students_cumulative_sum.csv dataset (see Table 3) originate mainly from AVASUS (Brasil, 2022a). This dataset provides data on the number of students by region and year. In addition, it brings a rate that represents the normalized data for purposes of comparison between the populations of each region and Brazil. We used population data estimated by the IBGE (Brasil, 2022e) to calculate the rate.

    Table 3: Description of Students dataset Features.

  19. T

    France Hospitals

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +15more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Hospitals [Dataset]. https://tradingeconomics.com/france/hospital
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2000 - Dec 31, 2022
    Area covered
    France
    Description

    Hospitals in France decreased to 43.80 per one million people in 2022 from 44.10 per one million people in 2021. This dataset includes a chart with historical data for France Hospitals.

  20. Hospital Payment and Value of Care

    • kaggle.com
    Updated Aug 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2017). Hospital Payment and Value of Care [Dataset]. https://www.kaggle.com/cms/paymentandvalue2017/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 10, 2017
    Dataset provided by
    Kaggle
    Authors
    Centers for Medicare & Medicaid Services
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Data from: https://data.medicare.gov/Hospital-Compare/Payment-and-value-of-care-Hospital/c7us-v4mf More information coming soon!

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-United-States-COVID-19-Hospitalization-Metr/7dk4-g6vg
Organization logo

Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED

Explore at:
application/rssxml, json, csv, xml, application/rdfxml, tsvAvailable download formats
Dataset updated
Jan 17, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
License

https://www.usa.gov/government-workshttps://www.usa.gov/government-works

Area covered
United States
Description

Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

Reporting information:

  • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
  • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
  • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
  • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
  • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

Metric details:

  • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
  • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
  • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
  • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020.
  • Cumulative COVID-19 Hospital Admissions Rate: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020 divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
  • New COVID-19 Hospital Admissions Rate (7-day average) percent change from prior week: Percent change in the 7-day average new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week.
  • New COVID-19 Hospital Admissions (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction.
  • New COVID-19 Hospital Admissions Rate (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
  • Total Hospitalized COVID-19 Patients: 7-day total number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
  • Total Hospitalized COVID-19 Patients (7-Day Average): 7-day average of the number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
  • COVID-19 Inpatient Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the entire jurisdiction is calculated as an average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
  • COVID-19 Inpatient Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the 7-day average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past 7 days, compared with the prior week, in the entire jurisdiction.
  • COVID-19 ICU Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as a 7-day average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
  • COVID-19 ICU Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past 7 days, compared with the prior week, in the in the entire jurisdiction.

Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.

October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.

December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.

January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.

Search
Clear search
Close search
Google apps
Main menu