By data.world's Admin [source]
This dataset provides essential information on the mental health services provided to children and young people in England. The data contained within the Mental Health Services Data Set (MHSDS) - Children & Young People covers a variety of different categories during a given reporting period, including primary level details, secondary level descriptions, number of open referrals for children's and young people's mental health services at the end of the reporting period, as well as number of first attended contacts for referrals open in the reporting period aged 0-18. It also provides insight into how many people are in contact with mental health services aged 0 to 18 at the time of reporting, how many referrals starting during this time were self-refreshers and more. This dataset includes valuable information that is necessary to better track and understand trends in order to provide more effective care
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This guide will provide you with an overview of the data contained in this dataset as well as information on how to effectively use it for your own research or personal purposes. Let's get started!
Overview of Data Fields
- REPORTING_PERIOD: The month and year of the reporting period (Date)
- BREAKDOWN: The type of breakdown of the data (String)
- PRIMARY_LEVEL: The primary level of the data (String)
- PRIMARY_LEVEL_DESCRIPTION: A description at the primary level of the data (String)
- SECONDARY_LEVEL: The secondary level of the data (String)
- Evaluating the efficacy of existing mental health services for children and young people by examining changes in relationships between different aspects of service delivery (e.g. referral activity, hospital spell activity, etc).
- Analysing geographical trends in mental health services to inform investment decisions and policies across different regions.
- Identifying areas of high need among vulnerable or marginalised citizens, such as those aged 0-18 or those with particular genetic makeup, to better target resources and support those most in need of help
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: mhsds-monthly-cyp-data-file-feb-fin-2017-1.csv | Column name | Description | |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------| | REPORTING_PERIOD | The period of time for which the data was collected. (String) | | BREAKDOWN | The breakdown of the data by age group. (String) | | PRIMARY_LEVEL | The primary level of the data. (String) | | PRIMARY_LEVEL_DESCRIPTION ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
Full profile of 10,000 people in the US - download here, data schema here, with more than 40 data points including - Full Name - Education - Location - Work Experience History and many more!
There are additionally 258+ Million US people profiles available, visit the LinkDB product page here.
Our LinkDB database is an exhaustive database of publicly accessible LinkedIn people and companies profiles. It contains close to 500 Million people and companies profiles globally.
By Bob Burggraaf [source]
This dataset reveals the faces of America's urbanization by providing the total population of USA cities in 2015. Through this dataset, you can explore and analyze the populations of cities across the United States. This dataset has undergone a series of data cleaning activities to help make sure that it is easy-to-use with visualization tools, such as cleaning up names of city and joining all cities into one formatted table. Therefore, allowing you to quickly visualize various aspects - like population trends or city demographics - in order to get an informative understanding about how our country is growing. With this knowledge, engaging in discussions related to city planning recommendations is easier than ever!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use this Dataset
This dataset contains information about the population of the major cities in the United States. The columns in this dataset include city, summary level, place Fips code, state, state Fips code and total population.
Using this dataset you can explore a variety of topics related to urbanization including population growth over time and comparative analysis between cities. You can also use it to study specific social or demographic trends such as age distribution or race/ethnicity among other key metrics. With the right analysis you could even predict which areas may experience significant growth or decline in their populations over time. Lastly if you want to compare American cities with other global metropolises then you could easily create aggregate tables that include those data points too!
- Use the data to calculate and demonstrate population growth for cities in the USA over time, providing a strong visual of population changes such as migration, birth/death rates and even shows how urbanization is playing a role in US's population change.
- Analyze correlations between population size and economic indicators (such as GDP) across various cities to examine job opportunities or comparative housing prices.
- Compare different city populations by state to compare disparate areas of the country and determine how much citizens from one state may be attracted to another based on economic advantages or cultural ties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Total_Population_By_City_Acs_2015_5_E_AgeSex.csv | Column name | Description | |:---------------------|:----------------------------------------------------------------------| | City | Name of the city. (String) | | Summary_Level | Level of detail of the data. (Integer) | | Place_Fips | Federal Information Processing Standard code for the city. (Integer) | | State | Name of the state. (String) | | State_Fips | Federal Information Processing Standard code for the state. (Integer) | | Total_Population | Total population of the city. (Integer) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Bob Burggraaf.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Population Mid-year Estimates from the Office for National Statistics (ONS). These are the official estimates of the resident population in Lincolnshire. ONS uses information from the census and other data to produce these official mid-year population estimates every year between each census. These figures show how many people live in each local area and the population age-sex structure. This data is updated annually. Although the ONS data shows exact numbers, they are estimates so some rounding should be applied. For current Armed forces populations, two Ministry of Defence links are also shown below. The ONS 2021 Census link has Veterans data. Population Projections data sourced from ONS is also available on this platform. The Source link shown below is to the ONS Nomis website. It has user-friendly data query tools for a broad range of ONS and other datasets from official sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data is from:
https://simplemaps.com/data/world-cities
We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.
Our database is:
Understanding Society, (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Verian Group (formerly Kantar Public) and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.
The Understanding Society: Calendar Year Dataset, 2022, is designed for analysts to conduct cross-sectional analysis for the 2022 calendar year. The Calendar Year datasets combine data collected in a specific year from across multiple waves and these are released as separate calendar year studies, with appropriate analysis weights, starting with the 2020 Calendar Year dataset. Each subsequent year, an additional yearly study is released.
The Calendar Year data is designed to enable timely cross-sectional analysis of individuals and households in a calendar year. Such analysis can, however, only involve variables that are collected in every wave (excluding rotating content, which is only collected in some of the waves). Due to overlapping fieldwork, the data files combine data collected in the three waves that make up a calendar year. Analysis cannot be restricted to data collected in one wave during a calendar year, as this subset will not be representative of the population. Further details and guidance on this study can be found in the document 9333_main_survey_calendar_year_user_guide_2022.
These calendar year datasets should be used for cross-sectional analysis only. For those interested in longitudinal analyses using Understanding Society please access the main survey datasets: End User Licence version or Special Licence version.
Understanding Society: the UK Household Longitudinal Study, started in 2009 with a general population sample (GPS) of UK residents living in private households of around 26,000 households and an ethnic minority boost sample (EMBS) of 4,000 households. All members of these responding households and their descendants became part of the core sample who were eligible to be interviewed every year. Anyone who joined these households after this initial wave was also interviewed as long as they lived with these core sample members to provide the household context. At each annual interview, some basic demographic information was collected about every household member, information about the household is collected from one household member, all 16+-year-old household members are eligible for adult interviews, 10-15-year-old household members are eligible for youth interviews, and some information is collected about 0-9 year-olds from their parents or guardians. Since 1991 until 2008/9 a similar survey, the British Household Panel Survey (BHPS), was fielded. The surviving members of this survey sample were incorporated into Understanding Society in 2010. In 2015, an immigrant and ethnic minority boost sample (IEMBS) of around 2,500 households was added. In 2022, a GPS boost sample (GPS2) of around 5,700 households was added. To know more about the sample design, following rules, interview modes, incentives, consent, and questionnaire content, please see the study overview and user guide.
Co-funders
In addition to the Economic and Social Research Council, co-funders for the study included the Department of Work and Pensions, the Department for Education, the Department for Transport, the Department of Culture, Media and Sport, the Department for Community and Local Government, the Department of Health, the Scottish Government, the Welsh Assembly Government, the Northern Ireland Executive, the Department of Environment and Rural Affairs, and the Food Standards Agency.
End User Licence and Special Licence versions:
There are two versions of the Calendar Year 2022 data. One is available under the standard End User Licence (EUL) agreement (SN 9333), and the other is a Special Licence (SL) version (SN 9334). The SL version contains month and year of birth variables instead of just age, more detailed country and occupation coding for a number of variables and various income variables have not been top-coded (see document 9333_eul_vs_sl_variable_differences for more details). Users are advised first to obtain the standard EUL version of the data to see if they are sufficient for their research requirements. The SL data have more restrictive access conditions; prospective users of the SL version will need to complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables in order to get permission to use that version. The main longitudinal versions of the Understanding Society study may be found under SNs 6614 (EUL) and 6931 (SL).
Low- and Medium-level geographical identifiers produced for the mainstage longitudinal dataset can be used with this Calendar Year 2022 dataset, subject to SL access conditions. See the User Guide for further details.
Suitable data analysis software
These data are provided by the depositor in Stata format. Users are strongly advised to analyse them in Stata. Transfer to other formats may result in unforeseen issues. Stata SE or MP software is needed to analyse the larger files, which contain about 1,800 variables.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES PLACE OF BIRTH - DP02 Universe - Total population Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 People not reporting a place of birth were assigned the state or country of birth of another family member, or were allocated the response of another individual with similar characteristics. People born outside the United States were asked to report their place of birth according to current international boundaries. Since numerous changes in boundaries of foreign countries have occurred in the last century, some people may have reported their place of birth in terms of boundaries that existed at the time of their birth or emigration, or in accordance with their own national preference.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Title: Add title here
Project Team: Add contact information for research project team members
Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.
Relevant publications/outputs: When available, add links to the related publications/outputs from this data.
Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.
Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?
Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.
Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.
List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.
Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).
Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Maryland population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Maryland. The dataset can be utilized to understand the population distribution of Maryland by age. For example, using this dataset, we can identify the largest age group in Maryland.
Key observations
The largest age group in Maryland was for the group of age 35 to 39 years years with a population of 429,168 (6.95%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Maryland was the 80 to 84 years years with a population of 113,210 (1.83%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maryland Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Austin. The dataset can be utilized to gain insights into gender-based income distribution within the Austin population, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/austin-tx-income-distribution-by-gender-and-employment-type.jpeg" alt="Austin, TX gender and employment-based income distribution analysis (Ages 15+)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Austin median household income by gender. You can refer the same here
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of London by race. It includes the population of London across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of London across relevant racial categories.
Key observations
The percent distribution of London population by race (across all racial categories recognized by the U.S. Census Bureau): 91.78% are white, 2.40% are Black or African American, 0.12% are American Indian and Alaska Native, 1.70% are Asian, 0.14% are some other race and 3.87% are multiracial.
https://i.neilsberg.com/ch/london-oh-population-by-race.jpeg" alt="London population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for London Population by Race & Ethnicity. You can refer the same here
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1920 census data was collected in January 1920. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, MORTGAGE, FARM, CLASSWKR, OCC1950, IND1950, MARST, RACE, SEX, RELATE, MTONGUE. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edited for this release, thus there are observations outside of the universe for some variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next release.
%3C!-- --%3E
This dataset was created on 2020-01-10 18:46:34.647
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1920 households: This dataset includes all households from the 1920 US census.
IPUMS 1920 persons: This dataset includes all individuals from the 1920 US census.
IPUMS 1920 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1920 datasets.
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Note: Starting April 27, 2023 updates change from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents by age: 0-9; 10-19; 20-29; 30-39; 40-49; 50-59; 60-69; 70-79; 80+; Unknown. Description The MD COVID-19 - Confirmed Deaths by Age Distribution data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by designated age ranges. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Probable Deaths by Age Distribution data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Retail Analytics: Store owners can use the model to track the number of customers visiting their stores during different times of the day or seasons, which can help in workforce and resource allocation.
Crowd Management: Event organizers or public authorities can utilize the model to monitor crowd sizes at concerts, festivals, public gatherings or protests, aiding in security and emergency planning.
Smart Transportation: The model can be integrated into public transit systems to count the number of passengers in buses or trains, providing real-time occupancy information and assisting in transportation planning.
Health and Safety Compliance: During times of pandemics or emergencies, the model can be used to count the number of people in a location, ensuring compliance with restrictions on gathering sizes.
Building Security: The model can be adopted in security systems to track how many people enter and leave a building or a particular area, providing useful data for access control.
Demographic data from Kalahari !Kung San people collected by Nancy Howell
Howell’s observations of the !Kung San were made by Howell in Botswana between August 1967 and May 1969. Fuller descriptions of the region and the people under study can be found in R. B. Lee and I. DeVore (eds), 1976, Kalahari Hunter-Gatherers: Studies of the !Kung San and Their Neighbors, Harvard University Press, Cambridge, Mass. And in N. Howell, 2000, Demography of the Dobe !Kung, Aldine de Gruyter, New York.
Only columns on height, weight, age, and sex were kept. Rows with any null values were dropped.
Number of instances: 544
Variables:
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('howell', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
By data.world's Admin [source]
This dataset provides essential information on the mental health services provided to children and young people in England. The data contained within the Mental Health Services Data Set (MHSDS) - Children & Young People covers a variety of different categories during a given reporting period, including primary level details, secondary level descriptions, number of open referrals for children's and young people's mental health services at the end of the reporting period, as well as number of first attended contacts for referrals open in the reporting period aged 0-18. It also provides insight into how many people are in contact with mental health services aged 0 to 18 at the time of reporting, how many referrals starting during this time were self-refreshers and more. This dataset includes valuable information that is necessary to better track and understand trends in order to provide more effective care
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This guide will provide you with an overview of the data contained in this dataset as well as information on how to effectively use it for your own research or personal purposes. Let's get started!
Overview of Data Fields
- REPORTING_PERIOD: The month and year of the reporting period (Date)
- BREAKDOWN: The type of breakdown of the data (String)
- PRIMARY_LEVEL: The primary level of the data (String)
- PRIMARY_LEVEL_DESCRIPTION: A description at the primary level of the data (String)
- SECONDARY_LEVEL: The secondary level of the data (String)
- Evaluating the efficacy of existing mental health services for children and young people by examining changes in relationships between different aspects of service delivery (e.g. referral activity, hospital spell activity, etc).
- Analysing geographical trends in mental health services to inform investment decisions and policies across different regions.
- Identifying areas of high need among vulnerable or marginalised citizens, such as those aged 0-18 or those with particular genetic makeup, to better target resources and support those most in need of help
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: mhsds-monthly-cyp-data-file-feb-fin-2017-1.csv | Column name | Description | |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------| | REPORTING_PERIOD | The period of time for which the data was collected. (String) | | BREAKDOWN | The breakdown of the data by age group. (String) | | PRIMARY_LEVEL | The primary level of the data. (String) | | PRIMARY_LEVEL_DESCRIPTION ...