70 datasets found
  1. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  2. N

    White Earth, ND Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). White Earth, ND Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in White Earth from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/white-earth-nd-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    White Earth, North Dakota
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of White Earth across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of White Earth was 93, a 0% decrease year-by-year from 2022. Previously, in 2022, White Earth population was 93, a decline of 4.12% compared to a population of 97 in 2021. Over the last 20 plus years, between 2000 and 2023, population of White Earth increased by 28. In this period, the peak population was 99 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the White Earth is shown in this column.
    • Year on Year Change: This column displays the change in White Earth population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth Population by Year. You can refer the same here

  3. World Population by Countries Dataset (1960-2021)

    • kaggle.com
    Updated Aug 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ASHWIN.S (2022). World Population by Countries Dataset (1960-2021) [Dataset]. https://www.kaggle.com/kaggleashwin/population-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 31, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ASHWIN.S
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Population of the world by Countries From 1960 to 2021

    Currently the population of our planet is around 7 billion and is increasing rapidly. The dataset given below is from data.worldbank.org and contains every nation's population from 1960 to 2021.

  4. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  5. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  6. f

    Predicting Virtual World User Population Fluctuations with Deep Learning

    • figshare.com
    7z
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Young Bin Kim; Nuri Park; Qimeng Zhang; Jun Gi Kim; Shin Jin Kang; Chang Hun Kim (2023). Predicting Virtual World User Population Fluctuations with Deep Learning [Dataset]. http://doi.org/10.1371/journal.pone.0167153
    Explore at:
    7zAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Young Bin Kim; Nuri Park; Qimeng Zhang; Jun Gi Kim; Shin Jin Kang; Chang Hun Kim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds.

  7. w

    Dataset of books called Between heaven and earth : the religious worlds...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Between heaven and earth : the religious worlds people make and the scholars who study them [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Between+heaven+and+earth+%3A+the+religious+worlds+people+make+and+the+scholars+who+study+them
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This dataset is about books. It has 2 rows and is filtered where the book is Between heaven and earth : the religious worlds people make and the scholars who study them. It features 7 columns including author, publication date, language, and book publisher.

  8. u

    Data from: Community Earth System Model v2 Large Ensemble (CESM2 LENS)

    • rda.ucar.edu
    • oidc.rda.ucar.edu
    • +1more
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Community Earth System Model v2 Large Ensemble (CESM2 LENS) [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Dataset updated
    May 20, 2022
    Description

    The US National Center for Atmospheric Research partnered with the IBS Center for Climate Physics in South Korea to generate the CESM2 Large Ensemble which consists of 100 ensemble members ... at 1 degree spatial resolution covering the period 1850-2100 under CMIP6 historical and SSP370 future radiative forcing scenarios. Data sets from this ensemble were made downloadable via the Climate Data Gateway on June 14, 2021. NCAR has copied a subset (currently ~500 TB) of CESM2 LENS data to Amazon S3 as part of the AWS Public Datasets Program. To optimize for large-scale analytics we have represented the data as ~275 Zarr stores format accessible through the Python Xarray library. Each Zarr store contains a single physical variable for a given model run type and temporal frequency (monthly, daily).

  9. Covid19 Dataset

    • kaggle.com
    Updated May 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shailesh Dwivedi (2020). Covid19 Dataset [Dataset]. https://www.kaggle.com/baba4121/covid19-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shailesh Dwivedi
    Description

    Context

    As the world is fighting against this invisible enemy a lot of data-driven students like me want to study it as well as we can. There is an enormous number of data set available on covid19 today but as a beginner, in this field, I wanted to find some more simple data. So here I come up with this covid19 data set which I scrapped from "https://www.worldometers.info/coronavirus". It is my way of learning by doing. This data is till 5/17/2020. I will keep on updating it.

    Content

    The dataset contains 194 rows and 12 columns which are described below:-

    Country: Contains the name of all Countries. Total_Cases: It contains the total number of cases the country has till 5/17/2020. Total_Deaths: Total number of deaths in that country till 5/17/2020. Total_Recovered: Total number of individuals recovered from covid19. Active_Cases: Total active cases in the country on 5/17/2020. Critical_Cases: Number of patients in critical condition. Cases/Million_Population: Number of cases per million population of that country. Deaths/Million_Population: Number of deaths per million population of that country. Total_Tests: Total number of tests performed 5/17/2020 Tests/Million_Population: Number of tests performed per million population. Population: Population of the country Continent: Continent in which the country lies.

    Acknowledgements

    "https://www.worldometers.info/coronavirus/"

  10. M

    World Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

  11. Global Green Economy Index (GGEI)

    • kaggle.com
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Tamanini (2024). Global Green Economy Index (GGEI) [Dataset]. https://www.kaggle.com/datasets/jeremytamanini/global-green-economy-index-ggei
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 8, 2024
    Dataset provided by
    Kaggle
    Authors
    Jeremy Tamanini
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    For the first time, the full results from the Global Green Economy Index (GGEI) are available in the public domain. Historically, only the aggregate results have been publicly accessible. The full dataset has been paywalled and accessible to our subscribers only. But the way in which we release GGEI data to the public is changing. Read on for a quick explanation for how and why.

    First, the how. The GGEI file publicly accessible today represents that dataset officially compiled in 2022. It contains the full results for each of the 18 indicators in the GGEI for 160 countries, across the four main dimensions of climate change & social equity, sector decarbonization, markets & ESG investment and the environment. Some (not all) of these data points have since been updated, as new datasets have been published. The GGEI is a dynamic model, updating in real-time as new data becomes available. Our subscribing clients will still receive this most timely version of the model, along with any customizations they may request.

    Now, the why. First and foremost, there is huge demand among academic researchers globally for the full GGEI dataset. Academic inquiry around the green transition, sustainable development, ESG investing, and green energy systems has exploded over the past several years. We receive hundreds of inquiries annually from these students and researchers to access the full GGEI dataset. Making it publicly accessible as we are today makes it easier for these individuals and institutions to use these GGEI to promote learning and green progress within their institutions.

    More broadly, the landscape for data has changed significantly. A decade ago when the GGEI was first published, datasets existed more in silos and users might subscribe to one specific dataset like the GGEI to answer a specific question. But today, data usage in the sustainability space has become much more of a system, whereby myriad data sources are synthesized into increasingly sophisticated models, often fueled by artificial intelligence. Making the GGEI more accessible will accelerate how this perspective on the global green economy can be integrated to these systems.

  12. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  13. n

    SeaTrack datasets

    • data.npolar.no
    Updated May 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strøm, Hallvard (hallvard.strom@npolar.no); Strøm, Hallvard (hallvard.strom@npolar.no) (2019). SeaTrack datasets [Dataset]. http://doi.org/10.21334/npolar.2019.787cd525
    Explore at:
    Dataset updated
    May 7, 2019
    Dataset provided by
    Norwegian Polar Data Centre
    Authors
    Strøm, Hallvard (hallvard.strom@npolar.no); Strøm, Hallvard (hallvard.strom@npolar.no)
    License

    http://spdx.org/licenses/CC0-1.0http://spdx.org/licenses/CC0-1.0

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Dec 31, 2022
    Area covered
    Description

    The countries party to SEATRACK host large and internationally important populations of several seabird species, many of which have experienced negative population trends over recent decades. Many seabird species are spread over vast oceanic areas for most of the year and only aggregate on land during the breeding season. Consequently, little is known about many aspects of their life away from the breeding grounds leaving large gaps in our knowledge and understanding of seabird life-histories.

    Development of small and lightweight instruments, so-called light-logger or GLS (global location sensor) technology has now provided scientists with the means to monitor bird movements throughout the year on a much greater scale than before. The loggers primarily record light levels which, in relation to time of year and day, can be used to calculate twice daily positions of an individual within a radius of approximately 180 km. SEATRACK is utilizing the full potential of light-logger technology with a large-scale coordinated and targeted effort encompassing a representative choice of species, colonies and sample sizes. Such data will help researchers to identify:

    • The most important moulting areas, migration routes and wintering areas for different seabird populations.
    • The size and the composition of seabird populations during the non-breeding season.
    • What environmental threats the different populations face.
    • The origin of birds (i.e. the breeding population) that will be affected in acute incidents such as oil spills, mass mortality due to starvation or drowning in fishing gear.
    • The different environmental conditions characterizing the different habitats occupied by Norwegian seabirds, how these change over time, and how they are reflected in the population dynamics and demography in the colonies
    • Responses to climate change and how this affects the different populations.

    Seabird migration patterns and non-breeding distribution have repeatedly been highlighted, by several social sectors as being some of the most important knowledge gaps, needed to be filled for effective management of seabird populations. SEATRACK intends to provide that information by producing:

    • Distribution maps and population origin maps. Documenting the area use during the non-breeding season, including moulting areas, migration routes and wintering areas for different seabird populations over a three-year period. Estimating the size and the composition/colony origin of populations during the non-breeding season.
    • Research articles about I) variation in migration strategies and the environmental factors underlying this variation, II) migration strategies and seabird demography/population dynamics, III) seabird migration strategies, human activities and marine spatial planning
  14. Fictional Worlds

    • kaggle.com
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Fictional Worlds [Dataset]. https://www.kaggle.com/datasets/thedevastator/fictional-worlds-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Fictional Worlds

    Immersive insights into diverse fictional realms

    By Someone13574 (From Huggingface) [source]

    About this dataset

    With its multitude of columns, this dataset allows users to delve into each unique fictional world with precision. The seed column serves as a distinctive identifier for every fictional world within the dataset. It offers a key to unlock the vast array of information contained within.

    The geography_and_nature column entails vivid descriptions and essential characteristics of the physical landscapes and natural features found in each fictional world. From lush green forests teeming with magical creatures to towering mountain ranges shrouded in mystery, this column unveils breathtaking details about the environment in these imaginary realms.

    The history column takes us on a journey through time; uncovering significant milestones, developments, and turning points that have shaped each fictional world's past. Without specific dates included in this dataset description for flexibility purposes when using it.

    To fully comprehend these captivating worlds from within their inhabitants' perspective comes the culture_and_society column. This section delves into customs, traditions spatial perturbations (people gathering because they like being together), social structures (how people are organized), lifestyle choices(shapes creator presence) (could be dystopia or utopia), economic systems(shapes creator presence which can also shapes culture)<

  15. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    • cds-stable-bopen.copernicus-climate.eu
    {grib,netcdf}
    Updated Jul 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1950 - Jul 8, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  16. n

    Global Demographic Data

    • access.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Global Demographic Data [Dataset]. https://access.earthdata.nasa.gov/collections/C1214610969-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1985 - Jan 1, 2025
    Area covered
    Earth
    Description

    The Global Demographic Data collection holds global gridded data products describing demographic information and water demand in relation to population data. Currently, water demand data are being distributed; population data will be added in the near future.

    Country-level urban, rural and total population estimate data from World Resources Institute (WRI) for the years 1985, 1995, and 2025 were gridded by the University of New Hampshire's Water Systems Analysis Groupusing methods outlined in Vorosmarty et al. (2000) for use in estimating global water resources based on climate and population changes.

    Currently available are five relative water demand (RWD) fraction data sets/ maps, produced by Vorosmarty et al. in their analysis of future water resources. The relative water demand is defined to be the total volume of water used either domestically, industrially or agriculturally (DIA) divided by the water discharge (Q). "Values of .2 to .4 indicate medium to high stress." (see Vorosmarty et al., 2000) This analysis deals only with sustainable water sources, and does not look at nonsustainable water sources, such a ground water mining. The RWD is computed on a .5 by .5 degree grid for two sentinel years: 1985 and 2025, which are two of the data sets. The ratio of the RWD for these two years provides a measure of change under scenarios of climate change only, population change only and the combination of climate change and population to produce the other three datasets. The ratio RWD values is relative to the RWD in the base year, 1985.

  17. o

    Question Decomposition Meaning Dataset

    • opendatabay.com
    .undefined
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Question Decomposition Meaning Dataset [Dataset]. https://www.opendatabay.com/data/ai-ml/51c7d209-b1e2-4218-bdf1-c935416c3ca4
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Data Science and Analytics
    Description

    Welcome to BreakData, an innovative dataset designed for exploring language understanding [1]. This dataset provides a wealth of information concerning question decomposition, operators, splits, sources, and allowed tokens, enabling precise question answering [1]. It offers deep insights into human language comprehension and interpretation, proving highly valuable for researchers developing sophisticated AI technologies [1]. The goal of BreakData is to facilitate the development of advanced natural language processing (NLP) models, applicable in various areas such as automated customer support, healthcare chatbots, or automated marketing campaigns [1].

    Columns

    Based on the QDMR Lexicon: Source and Allowed Tokens file, the dataset includes the following columns: * source: This string column indicates the origin of the question [2]. * allowed_tokens: This string column specifies the tokens permitted for the question [2].

    The dataset also comprises other files, such as QDMR files which include questions or statements from common domains like healthcare or banking, requiring interpretation based on a series of operators [3]. These files necessitate the identification of keywords, entities (e.g., time references, monetary amounts, Boolean values), and relationships between them [3]. Additionally, LogicalForms files contain logical forms that serve as building blocks for linking ideas across different sets of incoming variables [3].

    Distribution

    The BreakData dataset is typically provided in CSV format [1, 4]. It is structured into nine distinct files, which include QDMR_train.csv, QDMR_validation.csv, QDMR-highlevel_train.csv, QDMR-highlevel_test.csv, logicalforms_train.csv, logicalforms_validation.csv, QDMRlexicon_train.csv, QDMRLexicon_test.csv, and QDHMLexiconHighLevelTest.csv [1]. While the dataset's structure is clear, specific numbers for rows or records within each file are not detailed in the provided information. The current version of the dataset is 1.0 [5].

    Usage

    This dataset presents an excellent opportunity to explore and comprehend the intricacies of language understanding [1]. It is ideal for training models for a variety of natural language processing (NLP) activities, including: * Question answering systems [1]. * Text analytics [1]. * Automated dialogue systems [1]. * Developing advanced NLP models to analyse questions using decompositions, operators, and splits [6]. * Training machine learning algorithms to predict the semantic meaning of questions based on their decomposition and split [6]. * Conducting text analytics by utilising the allowed tokens dataset to map how people communicate specific concepts across different contexts or topics [6]. * Optimising machine decisions for human-like interactions, leading to improved decision-making in applications like automated customer support, healthcare advice, and marketing campaigns [1, 3].

    Coverage

    The BreakData dataset covers a global region [5]. Its content is drawn from common domains such as healthcare and banking, featuring questions and statements that require linguistic analysis [1, 3]. There are no specific notes on time range or demographic scope beyond these general domains.

    License

    CC0

    Who Can Use It

    This dataset is primarily intended for: * Researchers developing sophisticated models to advance AI technologies [1]. * Data scientists and AI/ML engineers looking to train models for natural language understanding tasks [1]. * Those interested in analysing existing questions or commands with accurate decompositions and operators [1]. * Developers of machine learning models powered by NLP for seamless inference and improved results in customer engagement [3].

    Dataset Name Suggestions

    • BreakData Language Decomposition
    • Question Decomposition Meaning Dataset
    • NLP Language Understanding Hub
    • Semantic Question Analysis Data
    • BreakData NLP Foundation

    Attributes

    Original Data Source: Break (Question Decomposition Meaning)

  18. a

    GPWv4 Population Density, 2015

    • hub.arcgis.com
    • cloud.csiss.gmu.edu
    • +2more
    Updated Mar 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). GPWv4 Population Density, 2015 [Dataset]. https://hub.arcgis.com/maps/d314746e11834a04968e64b25c49882c
    Explore at:
    Dataset updated
    Mar 14, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses. The Population Density, 2015 layer represents persons per square kilometer for year 2015. Data SummaryGPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators; which include the water mask represented in this service. Population estimates are derived by extrapolating the raw census counts to estimates for the 2010 target year. The development of GPWv4 builds upon previous versions of the data set (Tobler et al., 1997; Deichmann et al., 2001; Balk et al., 2006).The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this release consists only of total population estimates for the year 2015. This data is being released now to allow users access to the population grids.Recommended CitationCenter for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. Accessed DAY MONTH YEAR

  19. n

    Date From: The myriad of complex demographic responses of terrestrial...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Mar 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Paniw; Tamora James; C. Ruth Archer; Gesa Römer; Sam Levin; Aldo Compagnoni; Judy Che-Castaldo; Joanne Bennett; Andrew Mooney; Dylan Childs; Arpat Ozgul; Owen Jones; Jean Burns; Andrew Beckerman; Abir Patwari; Nora Sanchez-Gassen; Tiffany Knight; Roberto Salguero-Gómez (2021). Date From: The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis [Dataset]. http://doi.org/10.5061/dryad.hmgqnk9g7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 3, 2021
    Dataset provided by
    University of Sheffield
    University of Oxford
    Centre for Research on Ecology and Forestry Applications
    University of Canberra
    German Centre for Integrative Biodiversity Research
    University of Southern Denmark
    Nordregio
    Trinity College Dublin
    University of Zurich
    Universität Ulm
    Lincoln Zoo
    Case Western Reserve University
    Authors
    Maria Paniw; Tamora James; C. Ruth Archer; Gesa Römer; Sam Levin; Aldo Compagnoni; Judy Che-Castaldo; Joanne Bennett; Andrew Mooney; Dylan Childs; Arpat Ozgul; Owen Jones; Jean Burns; Andrew Beckerman; Abir Patwari; Nora Sanchez-Gassen; Tiffany Knight; Roberto Salguero-Gómez
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development, reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute < 1% of all terrestrial mammals. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa.

    Methods For each mammal species i with available life-history information, we searched SCOPUS for studies (published before 2018) where the title, abstract, or keywords contained the following search terms:

    Scientific species namei AND (demograph* OR population OR life-history OR "life history" OR model) AND (climat* OR precipitation OR rain* OR temperature OR weather) AND (surv* OR reprod* OR recruit* OR brood OR breed* OR mass OR weight OR size OR grow* OR offspring OR litter OR lambda OR birth OR mortality OR body OR hatch* OR fledg* OR productiv* OR age OR inherit* OR sex OR nest* OR fecund* OR progression OR pregnan* OR newborn OR longevity).

    We used the R package taxize (Chamberlain and Szöcs 2013) to resolve discrepancies in scientific names or taxonomic identifiers and, where applicable, searched SCOPUS using all scientific names associated with a species in the Integrated Taxonomic Information System (ITIS; http://www.itis.gov).

    We did not extract information on demographic-rate-climate relationships if:

    A study reported on single age or stage-specific demographic rates (e.g., Albon et al. 2002; Rézoiki et al. 2016)
    A study used an experimental design to link demographic rates to climate variation (e.g., Cain et al. 2008)
    A study considered the effects of climate only indirectly or qualitatively. In most cases, this occurred when demographic rates differed between seasons (e.g., dry vs. wet season) but were not linked explicitly to climatic factors (e.g., varying precipitation amount between seasons) driving these differences (e.g., de Silva et al. 2013; Gaillard et al. 2013).
    

    We included several studies of the same population as different studies assessed different climatic variables or demographic rates or spanned different years (e.g., for Rangifer tarandus platyrhynchus, Albon et al. 2017; Douhard et al. 2016).

    We note that we can miss a potentially relevant study if our search terms were not mentioned in the title, abstract, or keywords. To our knowledge, this occurred only once, for Mastomys natalensis (we included the relevant study [Leirs et al. 1997] into our review after we were made aware that it assesses climate-demography relationships in the main text).

    Lastly, we checked for potential database bias by running the search terms for a subset of nine species in Web of Science. The subset included three species with > three climate-demography studies published and available in SCOPUS (Rangifer tarandus, Cervus elaphus, Myocastor coypus); three species with only one climate-demography study obtained from SCOPUS (Oryx gazella, Macropus rufus, Rhabdomys pumilio); and another three species where SCOPUS did not return any published study (Calcochloris obtusirostris, Cynomops greenhalli, Suncus remyi). Species in the three subcategories were randomly chosen. Web of Science did not return additional studies for the three species where SCOPUS also failed to return a potentially suitable study. For the remaining six species, the total number of studies returned by Web of Science differed, but the same studies used for this review were returned, and we could not find any additional studies that adhered to our extraction criteria.

    Description of key collected data

    From all studies quantitatively assessing climate-demography relationships, we extracted the following information:

    Geographic location - The center of the study area was always used. If coordinates were not provided in a study, we assigned coordinates based on the study descriptions of field sites and data collection.
    Terrestrial biome - The study population was assigned to one of 14 terrestrial biomes (Olson et al. 2001) corresponding to the center of the study area. As this review is focused on general climatic patterns affecting demographic rates, specific microhabitat conditions described for any study population were not considered.
    Climatic driver - Drivers linked to demographic rates were grouped as either local/regional precipitation & temperature values or derived indices (e.g., ENSO, NAO). The temporal extent (e.g., monthly, seasonal, annual, etc.) and aggregation type (e.g., minimum, maximum, mean, etc.) of drivers was also noted.
    Demographic rate modeled - To facilitate comparisons, we grouped the demographic rates into either survival, reproductive success (i.e., whether or not reproduction occurre, reproductive output (i.e., number or rate of offspring production), growth (including stage transitions), or condition that determines development (i.e., mass or size). 
    Stage or sex modeled - We retrieved information on responses of demographic rates to climate for each age class, stage, or sex modeled in a given study.
    Driver effect - We grouped effects of drivers as positive (i.e., increased demographic rates), negative (i.e., reduced demographic rate), no effect, or context-dependent (e.g., positive effects at low population densities and now effect at high densities). We initially also considered nonlinear effects (e.g., positive effects at intermediate values and negative at extremes of a driver), but only 4 studies explicitly tested for nonlinear effects, by modelling squared or cubic climatic drivers in combination with driver interactions. We therefore considered nonlinear demographic effects as context dependent.  
    Driver interactions - We noted any density dependence modeled and any non-climatic covariates included (as additive or interactive effects) in the demographic-rate models assessing climatic effects.
    Future projections of climatic driver - In studies that indicated projections of drivers under climate change, we noted whether drivers were projected to increase, decrease, or show context-dependent trends. For studies that provided no information on climatic projections, we quantified projections as described in Detailed description of climate-change projections below (see also climate_change_analyses_mammal_review.R).
    
  20. e

    World - Regulatory Indicators for Sustainable Energy - Dataset -...

    • energydata.info
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). World - Regulatory Indicators for Sustainable Energy - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-regulatory-indicators-sustainable-energy-2016
    Explore at:
    Dataset updated
    Sep 30, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Regulatory Indicators for Sustainable Energy (RISE) is a comprehensive policy scorecard assessing the investment climate for sustainable energy and focusing on three key areas: energy access, energy efficiency and renewable energy. RISE covers 111 countries across the developed and developing worlds, which together represent over 90% of global population, GDP and energy consumption. With 28 indicators, 85 sub-indicators and 158 data points per country, RISE helps policy makers to understand how they are doing, compare across countries, learn from peer groups, and identify priority actions for the future. The source data and documents for 111 countries are available at http://rise.worldbank.org/library To learn more, please visit http://rise.worldbank.org/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
Organization logo

Climate Change: Earth Surface Temperature Data

Exploring global temperatures since 1750

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(88843537 bytes)Available download formats
Dataset updated
May 1, 2017
Dataset authored and provided by
Berkeley Earthhttp://berkeleyearth.org/
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Area covered
Earth
Description

Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

us-climate-change

Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

In this dataset, we have include several files:

Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

  • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
  • LandAverageTemperature: global average land temperature in celsius
  • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
  • LandMaxTemperature: global average maximum land temperature in celsius
  • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
  • LandMinTemperature: global average minimum land temperature in celsius
  • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
  • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
  • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

Other files include:

  • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
  • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
  • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
  • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

The raw data comes from the Berkeley Earth data page.

Search
Clear search
Close search
Google apps
Main menu