100+ datasets found
  1. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  2. Stock Market Dataset for Predictive Analysis

    • kaggle.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WARNER (2025). Stock Market Dataset for Predictive Analysis [Dataset]. https://www.kaggle.com/datasets/s3programmer/stock-market-dataset-for-predictive-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    WARNER
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This Stock Market Dataset is designed for predictive analysis and machine learning applications in financial markets. It includes 13647 records of simulated stock trading data with features commonly used in stock price forecasting.

    🔹 Key Features Date – Trading day timestamps (business days only) Open, High, Low, Close – Simulated stock prices Volume – Trading volume per day RSI (Relative Strength Index) – Measures market momentum MACD (Moving Average Convergence Divergence) – Trend-following momentum indicator Sentiment Score – Simulated market sentiment from financial news & social media Target – Binary label (1: Price goes up, 0: Price goes down) for next-day prediction This dataset is useful for training hybrid deep learning models such as LSTM, CNN, and Attention-based networks for stock market forecasting. It enables financial analysts, traders, and AI researchers to experiment with market trends, technical analysis, and sentiment-based predictions.

  3. Machine Learning stock prediction: HD Stock Prediction (Forecast)

    • kappasignal.com
    Updated Oct 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Machine Learning stock prediction: HD Stock Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/machine-learning-stock-prediction-hd.html
    Explore at:
    Dataset updated
    Oct 13, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Machine Learning stock prediction: HD Stock Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. All Stocks Data of Indian Stock Market(1 Year)

    • kaggle.com
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KESHAV_MAHESHWARI (2022). All Stocks Data of Indian Stock Market(1 Year) [Dataset]. https://www.kaggle.com/datasets/gmkeshav/all-stocks-data-of-indian-stock-market1-year
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    KESHAV_MAHESHWARI
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    After some rigorous SQL queries and coding on python. I made this dataset. In this dataset, all stocks of the Indian Stock Market are present a total of 2435 stocks. The data is of 1-year rows represent stock name and column represent date and I have filled the table with closing price. Enjoy and do some stock price predictions.

  5. Share of Americans investing money in the stock market 1999-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United States
    Description

    In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  6. Stock Market Dataset

    • kaggle.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jasineri (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/jasineri/stock-market-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    jasineri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Disclaimer: Educational Purposes Only

    The financial and International Securities Identification Number (ISIN) data listed on this platform is provided solely for educational purposes. The information is intended to serve as general guidance and does not constitute financial advice, an endorsement, or a recommendation for the purchase or sale of any securities.

    While we strive to ensure the accuracy and timeliness of the information presented, we make no representations or warranties, express or implied, regarding the completeness, accuracy, reliability, suitability, or availability of the provided data. Users are encouraged to independently verify any information obtained from this platform before making any investment decisions.

    This platform and its operators are not responsible for any errors, omissions, or inaccuracies in the provided data, nor for any actions taken in reliance on such information. Users are strongly advised to conduct thorough research and seek the advice of qualified financial professionals before making any investment decisions.

    The use of International Securities Identification Numbers (ISINs) and other financial data is subject to various regulations and licensing agreements. Users are responsible for complying with all applicable laws and respecting any terms and conditions associated with the use of such data.

    By accessing and using this platform, users acknowledge and agree that they are doing so at their own risk and discretion. This educational content is not a substitute for professional financial advice, and users should consult with qualified professionals for specific guidance tailored to their individual circumstances.

  7. w

    Dataset of stocks from People

    • workwithdata.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of stocks from People [Dataset]. https://www.workwithdata.com/datasets/stocks?f=1&fcol0=company&fop0=%3D&fval0=People
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about stocks. It has 1 row and is filtered where the company is People. It features 8 columns including stock name, company, exchange, and exchange symbol.

  8. Cloudflare (NET) Navigates the Web of Growth (Forecast)

    • kappasignal.com
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Cloudflare (NET) Navigates the Web of Growth (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/cloudflare-net-navigates-web-of-growth.html
    Explore at:
    Dataset updated
    Sep 26, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Cloudflare (NET) Navigates the Web of Growth

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Jul 14, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, rose to 3520 points on July 14, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 3.86% and is up 18.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  10. k

    Machine Learning Predicts QQQ to Increase in Value by 5% in the Next 3...

    • kappasignal.com
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Machine Learning Predicts QQQ to Increase in Value by 5% in the Next 3 Months (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/machine-learning-predicts-qqq-to.html
    Explore at:
    Dataset updated
    Jun 2, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Machine Learning Predicts QQQ to Increase in Value by 5% in the Next 3 Months

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. Can we predict stock market using machine learning? (FZO Stock Forecast)...

    • kappasignal.com
    Updated Nov 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (FZO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_20.html
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (FZO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. T

    Nigeria Stock Market NSE Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Nigeria Stock Market NSE Data [Dataset]. https://tradingeconomics.com/nigeria/stock-market
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 18, 1996 - Jul 11, 2025
    Area covered
    Nigeria
    Description

    Nigeria's main stock market index, the NSE-All Share, rose to 126150 points on July 11, 2025, gaining 1.37% from the previous session. Over the past month, the index has climbed 9.29% and is up 26.57% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Nigeria. Nigeria Stock Market NSE - values, historical data, forecasts and news - updated on July of 2025.

  13. What are the most successful trading algorithms? (NTAP Stock Forecast)...

    • kappasignal.com
    Updated Sep 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). What are the most successful trading algorithms? (NTAP Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/what-are-most-successful-trading.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are the most successful trading algorithms? (NTAP Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  15. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Jul 14, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, fell to 5350 points on July 14, 2025, losing 0.62% from the previous session. Over the past month, the index has climbed 0.19% and is up 7.36% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on July of 2025.

  16. TESLA STOCK PRICE HISTORY

    • kaggle.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). TESLA STOCK PRICE HISTORY [Dataset]. https://www.kaggle.com/datasets/adilshamim8/tesla-stock-price-history
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset presents an extensive record of daily historical stock prices for Tesla, Inc. (TSLA), one of the world’s most innovative and closely watched electric vehicle and clean energy companies. The data was sourced from Yahoo Finance, a widely used and trusted provider of financial market data, and covers a significant period spanning from Tesla’s initial public offering (IPO) to the most recent date available at the time of extraction.

    The dataset includes critical trading metrics for each market day, such as the opening price, highest and lowest prices of the day, closing price, adjusted closing price (accounting for dividends and splits), and total trading volume. This rich dataset supports a variety of use cases, including financial market analysis, investment research, time series forecasting, development and backtesting of trading algorithms, and educational projects in data science and finance.

    Dataset Features

    • Date: The calendar date for each trading session (in YYYY-MM-DD format)
    • Open: The opening price of TSLA shares at the start of the trading day
    • High: The highest price reached during the trading session
    • Low: The lowest price reached during the trading session
    • Close: The last price at which the stock traded during the day
    • Adj Close: The closing price adjusted for corporate actions (splits, dividends, etc.)
    • Volume: The total number of TSLA shares traded on that day

    Source and Collection Details

    • Source: Yahoo Finance - Tesla (TSLA) Historical Data
    • Collection Method: Data was downloaded using Yahoo Finance's CSV export feature for accuracy and completeness.
    • Time Range: Covers from Tesla’s IPO (June 2010) to the most recent available trading day.
    • Data Integrity: Minimal cleaning was performed—dates were standardized, and any duplicate or empty rows were removed; all values remain as originally reported by Yahoo Finance.

    Example Use Cases

    • Stock Price Prediction: Train and test time series models (ARIMA, LSTM, Prophet, etc.) to forecast Tesla’s stock prices.
    • Algorithmic Trading: Backtest and evaluate trading strategies using historical price and volume data.
    • Market Trend Analysis: Analyze price trends, volatility, and return rates over different periods.
    • Event Study: Investigate the impact of major announcements (e.g., product launches, earnings releases) on TSLA stock price.
    • Educational Projects: Use as a hands-on resource for learning finance, statistics, or machine learning.

    License & Acknowledgments

    • Intended Use: This dataset is provided for academic, research, and personal projects. For commercial or investment use, please verify data accuracy and consult Yahoo Finance’s terms of use.
    • Acknowledgment: Data sourced from Yahoo Finance. All trademarks and copyrights belong to their respective owners.
  17. Machine Learning Models for Gold Price Prediction (Forecast)

    • kappasignal.com
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Machine Learning Models for Gold Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/machine-learning-models-for-gold-price.html
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Machine Learning Models for Gold Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. NETFLIX Stock Data 2025

    • kaggle.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umer Haddii (2025). NETFLIX Stock Data 2025 [Dataset]. https://www.kaggle.com/datasets/umerhaddii/netflix-stock-data-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 13, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Umer Haddii
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Netflix, Inc. is an American media company engaged in paid streaming and the production of films and series.

    Market cap

    Market capitalization of Netflix (NFLX)
    
    Market cap: $517.08 Billion USD
    
    

    As of June 2025 Netflix has a market cap of $517.08 Billion USD. This makes Netflix the world's 19th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.

    Revenue

    Revenue for Netflix (NFLX)
    
    Revenue in 2025: $40.17 Billion USD
    

    According to Netflix's latest financial reports the company's current revenue (TTM ) is $40.17 Billion USD. In 2024 the company made a revenue of $39.00 Billion USD an increase over the revenue in the year 2023 that were of $33.72 Billion USD. The revenue is the total amount of income that a company generates by the sale of goods or services. Unlike with the earnings no expenses are subtracted.

    Earnings

    Earnings for Netflix (NFLX)
    
    Earnings in 2025 (TTM): $11.31 Billion USD
    
    

    According to Netflix's latest financial reports the company's current earnings are $40.17 Billion USD. In 2024 the company made an earning of $10.70 Billion USD, an increase over its 2023 earnings that were of $7.02 Billion USD. The earnings displayed on this page is the company's Pretax Income.

    End of Day market cap according to different sources

    On Jun 12th, 2025 the market cap of Netflix was reported to be:

    $517.08 Billion USD by Yahoo Finance

    $517.08 Billion USD by CompaniesMarketCap

    $517.21 Billion USD by Nasdaq

    Content

    Geography: USA

    Time period: May 2002- June 2025

    Unit of analysis: Netflix Stock Data 2025

    Variables

    VariableDescription
    datedate
    openThe price at market open.
    highThe highest price for that day.
    lowThe lowest price for that day.
    closeThe price at market close, adjusted for splits.
    adj_closeThe closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards.
    volumeThe number of shares traded on that day.

    Acknowledgements

    This dataset belongs to me. I’m sharing it here for free. You may do with it as you wish.

  19. DTE Energy (DTE) Stock Forecast: Powering Profits in 2024? (Forecast)

    • kappasignal.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DTE Energy (DTE) Stock Forecast: Powering Profits in 2024? (Forecast) [Dataset]. https://www.kappasignal.com/2024/06/dte-energy-dte-stock-forecast-powering.html
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DTE Energy (DTE) Stock Forecast: Powering Profits in 2024?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Stock market Dataset

    • kaggle.com
    Updated Apr 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abrar Ahmed (2023). Stock market Dataset [Dataset]. https://www.kaggle.com/datasets/abrarahmed26/stock-market-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abrar Ahmed
    Description

    Dataset

    This dataset was created by Abrar Ahmed

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
Organization logo

Stock Market Dataset

Historical daily prices of Nasdaq-traded stocks and ETFs

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(547714524 bytes)Available download formats
Dataset updated
Apr 2, 2020
Authors
Oleh Onyshchak
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Overview

This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

Data Structure

The date for every symbol is saved in CSV format with common fields:

  • Date - specifies trading date
  • Open - opening price
  • High - maximum price during the day
  • Low - minimum price during the day
  • Close - close price adjusted for splits
  • Adj Close - adjusted close price adjusted for both dividends and splits.
  • Volume - the number of shares that changed hands during a given day

All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

Search
Clear search
Close search
Google apps
Main menu