The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This database represents the historic, current and future estimates and projections with number of inhabitants for the world's largest urban areas from 1950-2050. The data covers cities and other urban areas with more than 750,000 people.
"Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
This dataset provides statistical indicators of tides, storm surges and sea level that can be used to characterize global sea level in present-day conditions and also to assess changes under climate change. The indicators calculated include extreme-value indicators (e.g. return periods including confidence bounds for total water levels and surge levels), probability indicators (e.g. percentile for total water levels and surge levels). They provide a basis for studies aiming to evaluate sea level variability, coastal flooding, coastal erosion, and accessibility of ports at a global scale. The extreme value statistics for different return periods can be used to assess the frequency of an event and form the basis of risk assessments. The global coverage allows for world-wide assessments that are particularly useful for the data scarce regions where detailed modelling studies are currently lacking. The indicators are computed from time series data available in a related dataset in the Climate Data Store named Global sea level change time series from 1950 to 2050 derived from reanalysis and high resolution CMIP6 climate projections (see Related data), where further details of the modelling are provided. The indicators are produced for three different 30-year periods corresponding to historical, present, and future climate conditions (1951-1980, 1985-2014, and 2021-2050). The future period is based on global climate projections using the high-emission scenario SSP5-8.5. The dataset is based on climate forcing from ERA5 global reanalysis and 4 Global Climate Models (GCMs) of the high resolution Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate projection dataset from the High Resolution Model Intercomparison Project (HighResMIP) multi-model ensemble. An estimate of the uncertainties associated with the climate forcing has been obtained through the use of a multi-model ensemble. Each of the indicators provides ensemble statistics computed across the 4 members of the HighResMIP ensemble (e.g. median, mean, standard deviation, range). Absolute and relative changes for the future period (2015-2050) relative to the present-day (1985-2014) are provided to assess climate change impacts on water levels. This dataset was produced on behalf of the Copernicus Climate Change Service.
# ggACene (global gridded Air Conditioning energy) projections
## Output AC and AC electricity gridded data
This repository hosts output data for SSPs126, 245, 370 and 585 on the estimated and future projected ownership of residential air conditioning, its energy consumption, and the underlying population (useful to quantify the per-capita average consumption or the headcount of people affected by the cooling gap).
### Input data and analysis replication
The repository also hosts input data to replicate the data generating process. A twin Github repository hosts code (https://github.com/giacfalk/ggACene) to run the model generating the ggACene (global gridded Air Conditioning energy) projections dataset.
## Instructions
To reproduce the model and generate the dataset from scratch, please refer to the following steps:
- Download input data "replication_package_input_data.7z" by cloning the repository
- Decompress the folder using 7-Zip (https://www.7-zip.org/download.html)
- Open RStudio and adjust the path folder in the sourcer.R script
- Run the sourcer.R script to train the ML model, make projections, and represent result files
### References
Falchetta, G., De Cian, E., Pavanello, F., & Wing, I. S. Inequalities in global residential cooling energy use to 2050. Forthcoming at Nature Communications
The ECHAM climate model has been developed from the ECMWF atmospheric model (therefore the first part of its name: EC) and a comprehensive parameterisation package developed at Hamburg therefore the abbreviation HAM) which allows the model to be used for climate simulations. The model is a spectral transform model with 19 atmospheric layers and the results used here derive from experiments performed with spatial resolution T42 (which approximates to about 2.8 degrees longitude/latitude resolution). The model has also been used at resolutions in the range T21 to T106. ECHAM4 is the current generation in the line of ECHAM models (Roeckner, et al., 1992). A summary of developments regarding model physics in ECHAM4 and a description of the simulated climate obtained with the uncoupled ECHAM4 model is given in Roeckner et al. (1996). The initial sea surface temperature and sea-ice data is the COLA/CAC AMIP SST and sea-ice data set. The mean terrain heights are computed from high resolution US Navy data set. The fraction of grid area covered by vegetation based on the Wilson and Henderson-Sellers (1985) data set. The ocean albedo is a function of solar zenith angle and the land albedo from the satellite data of Geleyn and Preuss (1983). A diurnal cycle and gravity wave-drag is included. The time-step of the model is 24 minutes, except for radiation which uses two hours. The ocean model is an updated version of the isopycnal model (OPYC3) developed by Josef Oberhuber (Oberhuber, 1993) at the Max-Planck-Institute for Meteorology, Hamburg, Germany. The name OPYC is derived from Ocean and isoPYCnal co-ordinates. The concept to use isopycnals as the vertical co-ordinate system for an OGCM is based on the observation that the interior ocean behaves as a rather conservative fluid. Even over long distances the origin of water masses can be traced back by considering the distribution of active or passive tracers. Treating the ocean as a conservative fluid fails in areas of significant turbulence activity such as the surface boundary layer. A surface mixed-layer is therefore coupled to the interior ocean in order to represent near-surface vertical mixing and to improve the response time-scales to atmospheric forcing which is controlled by the mixed-layer thickness. Since the model is designed for studies on large scales, a sea ice model with rheology is included and serves the purpose of de-coupling the ocean from extreme high-latitude winter conditions and promotes a realistic treatment of the salinity forcing due to melting or freezing sea ice. The experiments from which results are used here are the 1000-year unforced control simulation using the coupled ECHAM4/OPYC3 model and then two climate change simulations. The greenhouse gas only forced experiment (referred to as GGa1) used historical greenhouse gas forcing from 1860 to 1990 followed by a 1 per cent annum increase in radiative forcing from 1990 to 2099. The greenhouse gas and sulphate aerosol forced experiment (referred to as GSa1) used the GGa1 forcing, plus the negative forcing due to sulphate aerosols. This was represented by means of an increase in clear-sky surface albedo proportional to the local sulphate loading. The indirect effects of aerosols were not simulated. For 1860 to 1990 the historic sulphate aerosol forcing estimate was used and for 1990 to 2049 the aerosol forcing estimated for the IS92a emissions scenario. The GSa1 experiment did not extend beyond 2049. Fuller details of the ECHAM4/OPYC3 coupled model can be found at the DDC Yellow Pages. Several papers describe results using this version of the model - see Bacher et al. (1998), Oberhuber et al. (1998), Zhang et al. (1998). The climate sensitivity of ECHAM4 is about 2.6 degrees C.The A2 world consolidates into a series of roughly continental economic regions, emphasizing local cultural roots. In some regions, increased religious participation leads many to reject a materialist path and to focus attentionon contributing to the local community. Elsewhere, the trend is towards ncreased investment in education and science and growth in economic productivity. Social and political structures diversify with some regions moving towards stronger welfare systems and reduced income inequality, while others move towards "lean" government. Environmental concerns are relatively weak, although some attention is paid to bringing local pollution under control and maintaining local environmental amenities. Like B1, the B2 world is one of increased concern for environmental and social sustainability, but the character of this world differs substantially.
Education and welfare programs are widely pursued leading to reductions in mortality and, to a lesser extent, fertility. The population reaches about 10 billion people by 2100, consistent with both the United Nations and IIASA median pr... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.165.3 for complete metadata about this dataset.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in R:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F9e6d1523962cc28abdc1350d24b4d6d2%2Fgraph1.gif?generation=1722200436515965&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1616de0b16592ac867dff4afb533b32f%2Fgraph2.gif?generation=1722200441577665&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F93a1baac70b7c7c0182f9bdd83222a30%2Fgraph3.gif?generation=1722200446695740&alt=media" alt="">
All data and visualizations on Our World in Data rely on data sourced from one or several original data providers. Preparing this original data involves several processing steps. Depending on the data, this can include standardizing country names and world region definitions, converting units, calculating derived indicators such as per capita measures, as well as adding or adapting metadata such as the name or the description given to an indicator.
At the link below you can find a detailed description of the structure of our data pipeline, including links to all the code used to prepare data across Our World in Data.
All data produced by third-party providers and made available by Our World in Data are subject to the license terms from the original providers. Our work would not be possible without the data providers we rely on, so we ask you to always cite them appropriately (see below). This is crucial to allow data providers to continue doing their work, enhancing, maintaining and updating valuable data. All data, visualizations, and code produced by Our World in Data are completely open access under the Creative Commons BY license. You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited.
The World Bank EdStats database offers a comprehensive array of over 8,000 internationally comparable indicators related to education access, progression, completion, literacy, teachers, demographics, and expenditures. It covers the education cycle from pre-primary to vocational and tertiary education, including data on learning outcomes from assessments like PISA, TIMSS, PIRLS, equity data from household surveys, and educational projections up to 2050.
What does the data show?
This data shows the monthly averages of surface temperature (°C) for 2040-2069 using a combination of the CRU TS (v. 4.06) and UKCP18 global RCP2.6 datasets. The RCP2.6 scenario is an aggressive mitigation scenario where greenhouse gas emissions are strongly reduced.
The data combines a baseline (1981-2010) value from CRU TS (v. 4.06) with an anomaly from UKCP18 global. Where the anomaly is the change in temperature at 2040-2069 relative to 1981-2010.
The data is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator.
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'tas' (temperature at surface), the month and ‘upper’ ‘median’ or ‘lower’. E.g. ‘tas Mar Lower’ is the average of the daily average temperatures in March throughout 2040-2069, in the second lowest ensemble member.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas Jan Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
To select which ensemble members to use, the monthly averages of surface temperature for the period 2040-2069 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
UKCP18 v.20200110 (downloaded 17/08/22)
Useful links
Further information on CRU TS Further information on the UK Climate Projections (UKCP) Further information on understanding climate data within the Met Office Climate Data Portal
Annual Average number of people affected by floods in Projected Climate Conditions taking into considerations Socio-Economic Projections. Future climate conditions for the years 2050-2100 are estimated from the output of the EC‐EARTH3‐HR global model (Hazeleger et al., 2012) with RCP 8.5 and grid resolution of 0.5° (~55 km at the Equator). Demographic projections for the year 2050 are estimated on the basis of the World Population Prospects 2019 ,United Nations, Department of Economic and Social Affairs, Population Division (2019). This estimation is part of the results of a probabilistic regional flood risk assessment developed for the Horn of Africa Partnership for Early Warning and Early Action (developed by CIMA Foundation in cooperation with ICPAC, WFP, UNDRR, March 2021)
Please note this dataset supersedes previous versions on the Climate Data Portal. It has been uploaded following an update to the dataset in March 2023. This means sea level rise is approximately 1cm higher (larger) compared to the original data release (i.e. the previous version available on this portal) for all UKCP18 site-specific sea level projections at all timescales. For more details please refer to the technical note.What does the data show?The time-mean sea-level projections to 2100 show the amount of sea-level change (in cm) for each coastal location (grid-box) around the British Isles for several emission scenarios. Sea-level rise is the primary mechanism by which we expect coastal flood hazard to change in the UK in the future. The amount of sea-level rise depends on the location around the British Isles and increases with higher emission scenarios. Here, we provide the relative time-mean sea-level projections to 2100, i.e. the local sea-level change experienced at a particular location compared to the 1981-2000 average, produced as part of UKCP18.For each grid box the time-mean sea-level change projections are provided for the end of each decade (e.g. 2010, 2020, 2030 etc) for three emission scenarios known as Representative Concentration Pathways (RCP) and for three percentiles.The emission scenarios are:RCP2.6RCP4.5RCP8.5The percentiles are:5th percentile50th percentile95th percentileImportant limitations of the dataWe cannot rule out substantial additional sea-level rise associated with ice sheet instability processes that are not represented in the UKCP18 projections, as discussed in the recent IPCC Sixth Assessment Report (AR6). Although the time-mean sea-level projections presented here are to 2100, past greenhouse gas emissions have already committed us to substantial additional sea level rise beyond 2100. This is because the ocean and cryosphere (i.e. the frozen parts of our planet) are very slow to respond to global warming. So, even if global average air temperature stops rising, as global emissions are reduced, sea level will continue to rise well beyond the time changes in global average air temperature level off or decline. This is illustrated by the extended exploratory time-mean sea level projections and discussed further in AR6 (Fox-Kemper et al, 2021).What are the naming conventions and how do I explore the data?The data is supplied so that each row corresponds to the combination of a RCP emissions scenario and percentile value e.g. 'RCP45_50' is the RCP4.5 scenario and the 50th percentile. This can be viewed and filtered by the field 'RCP and Percentile'. The columns (fields) correspond to the end of each decade and the fields are named by sea level anomaly at year x, e.g. '2050 seaLevelAnom' is the sea level anomaly at 2050 compared to the 1981-2000 average.Please note that the styling and filtering options are independent of each other and the attribute you wish to style the data by can be set differently to the one you filter by. Please ensure that you have selected the RCP/percentile and decade you want to both filter and style the data by. Select the cell you are interested in to view all values. To understand how to explore the data please refer to the New Users ESRI Storymap.What are the emission scenarios?The 21st Century time-mean sea level projections were produced using some of the future emission scenarios used in the IPCC Fifth Assessment Report (AR5). These are RCP2.6, RCP4.5 and RCP8.5, which are based on the concentration of greenhouse gases and aerosols in the atmosphere. RCP2.6 is an aggressive mitigation pathway, where greenhouse gas emissions are strongly reduced. RCP4.5 is an intermediate ‘stabilisation’ pathway, where greenhouse gas emissions are reduced by varying levels. RCP8.5 is a high emission pathway, where greenhouse gas emissions continue to grow unmitigated. Further information is available in the Understanding Climate Data ESRI Storymap and the RCP Guidance on the UKCP18 website.What are the percentiles?The UKCP18 sea-level projections are based on a large Monte Carlo simulation that represents 450,000 possible outcomes in terms of global mean sea-level change. The Monte Carlo simulation is designed to sample the uncertainties across the different components of sea-level rise, and the amount of warming we see for a given emissions scenario across CMIP5 climate models. The percentiles are used to characterise the uncertainty in the Monte Carlo projections based on the statistical distribution of the 450,000 individual simulation members. For example, the 50th percentile represents the central estimate (median) amongst the model projections. Whilst the 95th percentile value means 95% of the model distribution is below that value and similarly the 5th percentile value means 5% of the model distribution is below that value. The range between the 5th to 95th percentiles represent the projection range amongst models and corresponds to the IPCC AR5 “likely range”. It should be noted that, there may be a greater than 10% chance that the real-world sea level rise lies outside this range. Data sourceThis data is an extract of a larger dataset (every year and more percentiles) which is available on CEDA at https://catalogue.ceda.ac.uk/uuid/0f8d27b1192f41088cd6983e98faa46eData has been extracted from the v20221219 version (downloaded 17/04/2023) of three files:seaLevelAnom_marine-sim_rcp26_ann_2007-2100.ncseaLevelAnom_marine-sim_rcp45_ann_2007-2100.ncseaLevelAnom_marine-sim_rcp85_ann_2007-2100.ncUseful links to find out moreFor a comprehensive description of the underpinning science, evaluation and results see the UKCP18 Marine Projections Report (Palmer et al, 2018).For a discussion on ice sheet instability processes in the latest IPCC assessment report, see Fox-Kemper et al (2021). Technical note for the update to the underpinning data: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp_tech_note_sea_level_mar23.pdfFurther information in the Met Office Climate Data Portal Understanding Climate Data ESRI Storymap.
The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not w... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.291.2 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed monthly variables for members 1-10 of World Avoided rcp8.5 members
This data collection consists of transcripts from 12 focus group discussions on themes related to social equality in Russia. The focus group discussions were conducted by the Institute of Applied Politics in Moscow, directed by Dr Kryshtanovskaya; using a discussion guide written by the Investigators. They were held in 12 cities chosen to represent different regions of the country, with an emphasis on provincial cities: Ufa, Kaliningrad, Ekaterinburg, Tiumen, Saratov, Ulyanovsk, Volgograd, Ivanovo, Irkutsk, Obolensk, Vladivostok and Protvino. The respondents included a mix of ages, genders, blue and white collar workers. The focus groups in Protvino and Ulyanovsk were held only for respondents age 18-29. The focus group discussions dealt with household and national economic change, perceptions of social fairness, and welfare values. Specifically, respondents were asked about the state of the national and local economies, their household economy, how they define rich and poor people and how they position themselves in relation to these categories. They were asked about whether they perceived differences in wealth between individuals, regions and between urban and rural areas as fair, and whether such differences are increasing or decreasing. Finally they were asked about whether the rich should take more responsibility for the welfare of the poor, about their own personal responsibility and that of the state and businesses, as well as about progressive income taxes and the degree to which the state should control the economy. The discussion guide is provided in Russian and English. Basic information about the respondents, including gender, age, and occupation are provided at the top of each focus group transcript. Each participant is identified by their given name only. The transcripts are provided in Russian. The Russian text was transcribed by the Institute of Applied Politics from audio files. A parallel set of focus groups was conducted in China and are available as the collection Social equality forum China: Focus group transcripts (see Related Resources). Taken together, Russia and China account for 41 per cent of the total territory of the BRICs and 63 per cent of their GDP/PPP. On Goldman Sachs projections China will be the world’s largest economy by 2050, and Russia its sixth largest. The project will seek to examine the following propositions: (1) that these two BRIC countries are becoming increasingly unequal; (2) that within them, political power and economic advantage are increasingly closely associated; (3) that their political systems have increasingly been employed to ensure that no effective challenge can be mounted to that combination of government position and economic advantage; (4) that set against a broader comparative perspective, an increasingly unequal society in which government is effectively immune from conventional challenge is likely to become increasingly regressive, or unstable, or both. Evidence will be drawn from official statistics, interviews with policy specialists and government officials, two dozen focus groups, and an analysis of the composition of the management boards of the largest companies in both countries. A final part of the analysis will employ crossnational evidence to test a series of hypotheses relating to the association between inequality and political instability on a more broadly comparative basis. Focus group discussions held in 12 Russian cities with 6 participants each drawn from a range of ages, both genders and different professions. Two focus groups were held for respondents age 18-29 only.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed monthly variables for members 1-10 of World Avoided ozone depleting substances only (unchanged ozone) rcp4.5 members
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundSelf-harm has become a major public health problem globally. Data on the burden of self-harm in this study were taken from the GBD 2021. This study aimed to quantify historical trends (1990–2021) in the global burden of self-harm across genders, age groups, and regions, and project future changes (2022–2050) through Bayesian forecasting models.MethodsBased on the seven GBD super-regions, the burden of self-harm was analyzed by region, age, and gender from 1990 to 2021. Hierarchical statistical approach was used to predict trends in global and regional changes in the burden of self-harm, 2022-2050.ResultIn 2021, the global DALYs and death counts from self-harm were 33.5 million (95% UI: 31.3-35.8) and 746.4 thousand (95% UI: 691.8-799.8). The region with the highest number of DALYs and deaths is South Asia and the highest age-standardized rates of DALYs and mortality were in central Europe, eastern Europe, and central Asia. Globally, the burden of self-harm was higher for males than for females. DALYs rates were highest among adolescents and young adults (20-29 years), whereas mortality rates showed a predominantly age-progressive pattern with the highest burden observed in middle-aged and older populations, albeit with a modest decline in the oldest age groups. Forecasting models showed a sustained decline in the global burden of self-harm from 2022-2050.ConclusionThe results highlight the need for policymakers to allocate resources to high-burden regions (e.g., South Asia and Eastern Europe), to implement gender- and age-specific prevention programs, and to strengthen cross-sectoral collaboration to address the underlying social determinants of self-harm. The findings call for strengthened mental health services and targeted interventions to effectively respond to and reduce the devastating impact of self-harm on individuals and the global community.
Please note this dataset supersedes previous versions on the Climate Data Portal. It has been uploaded following an update to the dataset in March 2023. This means sea level rise is approximately 1cm higher (larger) compared to the original data release (i.e. the previous version available on this portal) for all UKCP18 site-specific sea level projections at all timescales. For more details please refer to the technical note.What does the data show?The exploratory extended time-mean sea-level projections to 2300 show the amount of sea-level change (in cm) for each coastal location (grid-box) around the British Isles for several emission scenarios. Sea-level rise is the primary mechanism by which we expect coastal flood risk to change in the UK in the future. The amount of sea-level rise depends on the location around the British Isles and increases with higher emission scenarios. Here, we provide the relative time-mean sea-level projections to 2300, i.e. the local sea-level change experienced at a particular location compared to the 1981-2000 average, produced as part of UKCP18.For each grid box the time-mean sea-level change projections are provided for the end of each decade (e.g. 2010, 2020, 2030 etc) for three emission scenarios known as Representative Concentration Pathways (RCP) and for three percentiles.The emission scenarios are:RCP2.6RCP4.5RCP8.5The percentiles are:5th percentile50th percentile95th percentileImportant limitations of the dataWe cannot rule out substantial additional sea-level rise associated with ice sheet instability processes that are not represented in the UKCP18 projections, as discussed in the recent IPCC Sixth Assessment Report (AR6). These exploratory projections show sea levels continue to increase beyond 2100 even with large reductions in greenhouse gas emissions. It should be noted that these projections have a greater degree of uncertainty than the 21st Century Projections and should therefore be treated as illustrative of the potential future changes. They are designed to be used alongside the 21st Century projections for those interested in exploring post-2100 changes.What are the naming conventions and how do I explore the data?The data is supplied so that each row corresponds to the combination of a RCP emissions scenario and percentile value e.g. 'RCP45_50' is the RCP4.5 scenario and the 50th percentile. This can be viewed and filtered by the field 'RCP and Percentile'. The columns (fields) correspond to the end of each decade and the fields are named by sea level anomaly at year x, e.g. '2050 seaLevelAnom' is the sea level anomaly at 2050 compared to the 1981-2000 average.Please note that the styling and filtering options are independent of each other and the attribute you wish to style the data by can be set differently to the one you filter by. Please ensure that you have selected the RCP/percentile and decade you want to both filter and style the data by. Select the cell you are interested in to view all values.To understand how to explore the data please refer to the New Users ESRI Storymap.What are the emission scenarios?The 21st Century time-mean sea level projections were produced using some of the future emission scenarios used in the IPCC Fifth Assessment Report (AR5). These are RCP2.6, RCP4.5 and RCP8.5, which are based on the concentration of greenhouse gases and aerosols in the atmosphere. RCP2.6 is an aggressive mitigation pathway, where greenhouse gas emissions are strongly reduced. RCP4.5 is an intermediate ‘stabilisation’ pathway, where greenhouse gas emissions are reduced by varying levels. RCP8.5 is a high emission pathway, where greenhouse gas emissions continue to grow unmitigated. Further information is available in the Understanding Climate Data ESRI Storymap and the RCP Guidance on the UKCP18 website.What are the percentiles?The UKCP18 sea-level projections are based on a large Monte Carlo simulation that represents 450,000 possible outcomes in terms of global mean sea-level change. The Monte Carlo simulation is designed to sample the uncertainties across the different components of sea-level rise, and the amount of warming we see for a given emissions scenario across CMIP5 climate models. The percentiles are used to characterise the uncertainty in the Monte Carlo projections based on the statistical distribution of the 450,000 individual simulation members. For example, the 50th percentile represents the central estimate (median) amongst the model projections. Whilst the 95th percentile value means 95% of the model distribution is below that value and similarly the 5th percentile value means 5% of the model distribution is below that value. The range between the 5th to 95th percentiles represent the projection range amongst models and corresponds to the IPCC AR5 “likely range”. It should be noted that, there may be a greater than 10% chance that the real-world sea level rise lies outside this range.Data sourceThis data is an extract of a larger dataset (every year and more percentiles) which is available on CEDA at https://catalogue.ceda.ac.uk/uuid/a077f4058cda4cd4b37ccfbdf1a6bd29Data has been extracted from the v20221219 version (downloaded 17/04/2023) of three files:seaLevelAnom_marine-sim_rcp26_ann_2007-2300.ncseaLevelAnom_marine-sim_rcp45_ann_2007-2300.ncseaLevelAnom_marine-sim_rcp85_ann_2007-2300.ncUseful links to find out moreFor a comprehensive description of the underpinning science, evaluation and results see the UKCP18 Marine Projections Report (Palmer et al, 2018).For a discussion on ice sheet instability processes in the latest IPCC assessment report, see Fox-Kemper et al (2021). Technical note for the update to the underpinning data: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp_tech_note_sea_level_mar23.pdf.Further information in the Met Office Climate Data Portal Understanding Climate Data ESRI Storymap.
The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not w... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.274.2 for complete metadata about this dataset.
The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not w... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.269.4 for complete metadata about this dataset.
The experiments with the GFDL model used here were performed using the coupled ocean-atmosphere model described in Manabe et al. (1991) and Stouffer et al., (1994) and references therein. The model has interactive clouds and seasonally varying solar insolation. The atmospheric component has nine finite difference (sigma) levels in the vertical. This version of the model was run at a rhomboidal resolution of 15 waves (R15) yielding an equivalent resolution of about 4.5 degrees latitude by 7.5 degrees longitude. The model has global geography consistent with its computational resolution and seasonal (but not diurnal) variation of insolation. The ocean model is based on that of Byan and Lewis (1979) with a spacing between gridpoints of 4.5 degrees latitude and 3.7 degrees longitude. It has 12 unevenly spaced levels in the vertical dimension. To reduce model drift, the fluxes of heat and water are adjusted by amounts which vary seasonally and geographically, but do not change from one year to another. The model also includes a dynamic sea-ice model (Bryan, 1969) which allows the system additional degrees of freedom. The 1000-year unforced simulation used here is described in Manabe and Stouffer (1996). The drift in global-mean temperature during this unforced simulation is very small at about -0.023 degrees C per century. The two GFDL-R15 climate change experiments used here use the IS92a scenario of estimated past and future greenhouse gas (GGa1) and combined greenhouse gas and sulphate aerosol (GSa1) forcing for the period 1765-2065 (Haywood et al., 1997). For the GGa1 experiment only the 100-year segment from 1958-2057 are available through the IPCC DDC. The radiative effects of all greenhouse gases is represented in terms of an equivalent CO2 concentration, and the direct radiative sulphate aerosol forcing is parameterised in terms of specified spatially dependent surface albedo changes (following Mitchell et al., 1995). Results from these climate change experiments are discussed in Haywood et al. (1997). The model's climate sensitivity is about 3.7 degrees C. The A2 world consolidates into a series of roughly continental economic regions, emphasizing local cultural roots. In some regions, increased religious participation leads many to reject a materialist path and to focus attention on contributing to the local community. Elsewhere, the trend is towards ncreased investment in education and science and growth in economic productivity. Social and political structures diversify with some regions moving towards stronger welfare systems and reduced income inequality, while others move towards "lean" government. Environmental concerns are relatively weak, although some attention is paid to bringing local pollution under control and maintaining local environmental amenities. The A2 world consolidates into a series of roughly continental economic regions, emphasizing local cultural roots. In some regions, increased religious participation leads many to reject a materialist path and to focus attention on contributing to the local community. Elsewhere, the trend is towards increased investment in education and science and growth in economic productivity. Social and political structures diversify, with some regions moving towards stronger welfare systems and reduced income inequality, while others move towards "lean" government. Environmental concerns are relatively weak, although some attention is paid to bringing local pollution under control and maintaining local environmental amenities. The A2 world sees more international tensions and less cooperation than in A1 or B1. People, ideas and capital are less mobile so that technology diffuses slowly. International disparities in productivity, and hence income per capita, are maintained or increased. With the emphasis on family and community life, fertility rates decline only slowly, although they vary among regions. Hence, this scenario family has high population growth (to 15 billion by 2100) with comparatively low incomes per capita relative to the A1 and B1 worlds, at US$7,200 in 2050 and US$16,000 in 2100.Technological change is rapid in some regions and slow in others as industry adjusts to local resource endowments, culture, and education levels. Regions with abundant energy and mineral resources ... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.169.2 for complete metadata about this dataset.
The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not w... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.309.2 for complete metadata about this dataset.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data