76 datasets found
  1. London's Population Over Time

    • kaggle.com
    Updated Nov 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). London's Population Over Time [Dataset]. https://www.kaggle.com/datasets/thedevastator/the-future-of-london-s-population-central-trend/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 25, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Area covered
    London
    Description

    London's Population Over Time

    For trend prediction London's population

    By Eva Murray [source]

    About this dataset

    This file contains data on the projected population of London from 2011 to 2050. The data comes from the London Datastore and offers a glimpse into the future of one of the world's most populous cities

    How to use the dataset

    Research Ideas

    • Predicting crime rates based on population growth
    • Determining which areas of London will need more infrastructure to accommodate the growing population
    • Planning for different marketing and advertising strategies based on demographics

    Acknowledgements

    Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: central_trend_2017_base.csv | Column name | Description | |:--------------|:------------------------------------| | gss_code | The GSS code for the area. (String) | | district | The name of the district. (String) | | component | The population component. (String) | | sex | The sex of the population. (String) | | age | The age of the population. (String) | | 2011 | The population in 2011. (Integer) | | 2012 | The population in 2012. (Integer) | | 2013 | The population in 2013. (Integer) | | 2014 | The population in 2014. (Integer) | | 2015 | The population in 2015. (Integer) | | 2016 | The population in 2016. (Integer) | | 2017 | The population in 2017. (Integer) | | 2018 | The population in 2018. (Integer) | | 2019 | The population in 2019. (Integer) | | 2020 | The population in 2020. (Integer) | | 2021 | The population in 2021. (Integer) | | 2022 | The population in 2022. (Integer) | | 2023 | The population in 2023. (Integer) | | 2024 | The population in 2024. (Integer) | | 2025 | The population in 2025. (Integer) | | 2026 | The population in 2026. (Integer) | | 2027 | The population in 2027. (Integer) | | 2028 | The population in 2028. (Integer) | | 2029 | The population in 2029. (Integer) | | 2030 | The population in 2030. (Integer) | | 2031 | The population in 2031. (Integer) | | 2032 | The population in 2032. (Integer) | | 2033 | The population in 2033. (Integer) | | 2034 | The population in 2034. (Integer) | | 2035 | The population in 2035. (Integer) | | 2036 | The population in 2036. (Integer) | | 2037 | The population in 2037. (Integer) | | 2038 | The population in 2038. (Integer) | | 2039 | The population in 20 |

    Acknowledgements

    If you use this dataset in your research, please credit Eva Murray.

  2. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World, World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. QS World

    • kaggle.com
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira gibin (2025). QS World [Dataset]. http://doi.org/10.34740/kaggle/dsv/10596910
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    Kaggle
    Authors
    willian oliveira gibin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The QS World University Rankings for 2025 is a list of universities from all over the world, organized to show which ones are the best in various areas. It is widely recognized as one of the most reliable ways to compare higher education institutions. This ranking helps students, researchers, and decision-makers understand how well universities perform in terms of academics, teaching, research, and global connections. Let’s break it down into simple parts so that you can understand it easily.

    What’s in the Ranking? The ranking includes several key pieces of information about each university:

    University Name: This is simply the name of the school. For example, Harvard University or Oxford University. Ranking Position: This tells you the university’s position on the list, like 1st, 50th, or 200th. A lower number means the university is ranked higher. Country/Region: This shows where the university is located, like the USA, the UK, or Japan. Academic Reputation Score: This score is based on surveys of professors and researchers. They give their opinions on which universities are best for studying and learning. Employer Reputation Score: Employers are asked which universities produce the most skilled graduates. This score shows how good a university is at preparing students for jobs. Faculty-Student Ratio: This measures how many students there are per teacher. A lower number means smaller classes and more personal attention for students. Citations per Faculty: This is about research. It shows how often the university’s studies are mentioned in other research papers. The more citations, the better. International Faculty & Students: This looks at how many teachers and students come from different countries, showing how global and diverse the university is. Why Is This Ranking Useful? There are many ways this ranking can help people:

    For Students: It helps students decide where they might want to study. For example, if someone wants a university with a good reputation for teaching and research, they can use this ranking to find the best options. For Universities: Schools can use the rankings to see how they compare to others. If one university is ranked lower than another, it can look at the scores to find ways to improve. For Researchers: Researchers can study the ranking to learn about trends in global education. For example, they might explore why certain regions, like Asia or Europe, have universities that are improving quickly. For Policymakers: Governments and organizations can use the rankings to decide where to invest in education. They can also study which areas of education are most important for the future. What Can We Learn from It? The QS World University Rankings help us learn which universities are leading in academics and research. It also shows us how important global diversity is in education. By understanding these rankings, people can make smarter decisions about studying, teaching, or improving education systems. It’s like a guidebook for the world of universities, helping everyone find the best options and learn from the best practices.

  4. QS World University Rankings 2025

    • kaggle.com
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melissa Monfared (2025). QS World University Rankings 2025 [Dataset]. https://www.kaggle.com/datasets/melissamonfared/qs-world-university-rankings-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Kaggle
    Authors
    Melissa Monfared
    Description

    Overview:

    This dataset provides a comprehensive overview of the QS World University Rankings for the year 2025, encompassing data on over 1,500 universities from 105 education systems worldwide. It includes institutional characteristics, regional classification, and a variety of performance indicators that reflect academic reputation, employability, sustainability, and internationalization.

    Dataset Details:

    The dataset includes institutional rankings for both 2025 and 2024, alongside scores and ranks for numerous metrics used to evaluate universities. These metrics offer insight into academic quality, research output, international engagement, and employment outcomes.

    Schema and Column Descriptions:

    Column NameDescription
    RANK_2025University’s overall rank in the 2025 QS World University Rankings
    RANK_2024University’s overall rank in the 2024 QS Rankings
    Institution_NameName of the university or institution
    LocationCountry in which the institution is located
    RegionGlobal region (e.g., Europe, Asia, North America)
    SIZESize classification of the institution (e.g., S, M, L, XL)
    FOCUSFocus type (e.g., Comprehensive, Focused)
    RES.Research intensity (e.g., Very High, High)
    STATUSStatus of the institution (e.g., Public, Private)
    Academic_Reputation_ScoreScore based on global academic reputation survey
    Academic_Reputation_RankRank based on academic reputation
    Employer_Reputation_ScoreScore based on global employer reputation survey
    Employer_Reputation_RankRank based on employer reputation
    Faculty_Student_ScoreScore reflecting student-to-faculty ratio
    Faculty_Student_RankRank based on faculty-student ratio
    Citations_per_Faculty_ScoreScore reflecting research impact (citations per faculty)
    Citations_per_Faculty_RankRank based on citations per faculty
    International_Faculty_ScoreScore representing international diversity of faculty
    International_Faculty_RankRank based on international faculty presence
    International_Students_ScoreScore representing diversity of international students
    International_Students_RankRank based on international student ratio
    International_Research_Network_ScoreScore based on global research collaboration
    International_Research_Network_RankRank based on international research partnerships
    Employment_Outcomes_ScoreScore reflecting graduates’ employability and success
    Employment_Outcomes_RankRank based on employment outcomes
    Sustainability_ScoreScore reflecting sustainability initiatives and performance
    Sustainability_RankRank based on sustainability measures
    Overall_ScoreFinal composite score used to determine the university's ranking

    Key Features:

    • Extensive Coverage: Includes over 1,500 institutions from 105 countries.
    • Multi-Dimensional: Covers a range of indicators such as research, teaching, employability, and internationalization.
    • Comparative Insights: Provides year-over-year ranking data (2024 vs. 2025) for trend analysis.

    Usage:

    This dataset is suitable for: - Higher Education Analysis: Track university performance across global metrics. - Student Decision-Making: Support students choosing top-ranked institutions. - Policy & Strategy: Aid education policymakers and institutional strategists in benchmarking and improvement planning. - Data Visualization: Ideal for visual dashboards, maps, and interactive reports on global university performance.

    Data Maintenance:

    • Source: QS Top Universities Ranking
    • Last Updated: 2025
    • License: Educational and research purposes (refer to source terms)
  5. T

    CORONAVIRUS DEATH by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). CORONAVIRUS DEATH by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-death
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Aug 14, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATH reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.

  7. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  8. M

    World Life Expectancy (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Life Expectancy (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/life-expectancy
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    World, World
    Description

    Historical chart and dataset showing World life expectancy by year from 1950 to 2025.

  9. Average daily time spent on social media worldwide 2012-2025

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  10. N

    Black Earth Town, Wisconsin annual income distribution by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Earth Town, Wisconsin annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9833d2-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Black Earth town. The dataset can be utilized to gain insights into gender-based income distribution within the Black Earth town population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Black Earth town, among individuals aged 15 years and older with income, there were 202 men and 148 women in the workforce. Among them, 118 men were engaged in full-time, year-round employment, while 63 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 6.78% fell within the income range of under $24,999, while none of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 39.83% of men in full-time roles earned incomes exceeding $100,000, while 36.51% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here

  11. N

    Country Life Acres, MO annual income distribution by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Country Life Acres, MO annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/country-life-acres-mo-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Country Life Acres
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Country Life Acres. The dataset can be utilized to gain insights into gender-based income distribution within the Country Life Acres population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Country Life Acres, among individuals aged 15 years and older with income, there were 29 men and 31 women in the workforce. Among them, 17 men were engaged in full-time, year-round employment, while 3 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 5.88% fell within the income range of under $24,999, while none of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 94.12% of men in full-time roles earned incomes exceeding $100,000, while 66.67% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Life Acres median household income by race. You can refer the same here

  12. N

    Earth, TX annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Earth, TX annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/earth-tx-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth, Texas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Earth population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Earth, among individuals aged 15 years and older with income, there were 380 men and 236 women in the workforce. Among them, 217 men were engaged in full-time, year-round employment, while 79 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 8.29% fell within the income range of under $24,999, while 34.18% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 23.96% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here

  13. T

    RESEARCHERS IN R D PER MILLION PEOPLE WB DATA.HTML; by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). RESEARCHERS IN R D PER MILLION PEOPLE WB DATA.HTML; by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/researchers-in-r-d-per-million-people-wb-data.html;
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Aug 28, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for RESEARCHERS IN R D PER MILLION PEOPLE WB DATA.HTML; reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  14. Life style; personal characteristics

    • cbs.nl
    • ckan.mobidatalab.eu
    • +2more
    xml
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2025). Life style; personal characteristics [Dataset]. https://www.cbs.nl/en-gb/figures/detail/85457ENG
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2014 - 2024
    Area covered
    The Netherlands
    Description

    This table contains data on life style of the Dutch population in private households. These data can be grouped by several personal characteristics.

    Data available from: 2014.

    Status of the data: final.

    Changes by April 3, 2025: Data about 2024 have been added. Figures taking a fall course or fall training among people aged 65 and over were added and data about high risk sexual activity in the previous twelve months among people aged 16 and over were added.

    Changes by September 24, 2024: The nutrition score is calculated based on various components. For the component score for snacks, for children aged 1 to 9 years people, the cut-off point of persons aged 9 years and older were incorrectly used instead of the age-specific cut-off points. This has been adjusted. As a result, the figures for the total food score (high, medium, low and average nutrition score) changed slightly.

    When will new data be published? Data on reporting year 2025 will be published in the second quarter of 2026

  15. b

    Apple Statistics (2025)

    • businessofapps.com
    Updated Mar 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2021). Apple Statistics (2025) [Dataset]. https://www.businessofapps.com/data/apple-statistics/
    Explore at:
    Dataset updated
    Mar 16, 2021
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...

  16. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(28125832), csv(60517511), csv(75015194), csv(60201673), csv(60676655), csv(74351424), csv(52019564), csv(60023260), csv(74689382), csv(51592721), csv(73906266), csv(15127221), csv(1128641), csv(5095), csv(11738570), zip, csv(74043128), csv(24235858), csv(74497014), csv(21575405)Available download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  17. N

    Black Earth, WI annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Earth, WI annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/black-earth-wi-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Black Earth
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Black Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Black Earth population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Black Earth, among individuals aged 15 years and older with income, there were 677 men and 591 women in the workforce. Among them, 290 men were engaged in full-time, year-round employment, while 233 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 5.52% fell within the income range of under $24,999, while 3.86% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 15.86% of men in full-time roles earned incomes exceeding $100,000, while 13.30% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth median household income by race. You can refer the same here

  18. N

    Globe, AZ annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Globe, AZ annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/baa82839-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arizona, Globe
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Globe. The dataset can be utilized to gain insights into gender-based income distribution within the Globe population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Globe, among individuals aged 15 years and older with income, there were 2,809 men and 2,549 women in the workforce. Among them, 1,214 men were engaged in full-time, year-round employment, while 1,147 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 2.64% fell within the income range of under $24,999, while 12.73% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 22.16% of men in full-time roles earned incomes exceeding $100,000, while 3.23% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Globe median household income by race. You can refer the same here

  19. All-time biggest online data breaches 2025

    • statista.com
    • ai-chatbox.pro
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). All-time biggest online data breaches 2025 [Dataset]. https://www.statista.com/statistics/290525/cyber-crime-biggest-online-data-breaches-worldwide/
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    Worldwide
    Description

    The largest reported data leakage as of January 2025 was the Cam4 data breach in March 2020, which exposed more than 10 billion data records. The second-largest data breach in history so far, the Yahoo data breach, occurred in 2013. The company initially reported about one billion exposed data records, but after an investigation, the company updated the number, revealing that three billion accounts were affected. The National Public Data Breach was announced in August 2024. The incident became public when personally identifiable information of individuals became available for sale on the dark web. Overall, the security professionals estimate the leakage of nearly three billion personal records. The next significant data leakage was the March 2018 security breach of India's national ID database, Aadhaar, with over 1.1 billion records exposed. This included biometric information such as identification numbers and fingerprint scans, which could be used to open bank accounts and receive financial aid, among other government services.

    Cybercrime - the dark side of digitalization As the world continues its journey into the digital age, corporations and governments across the globe have been increasing their reliance on technology to collect, analyze and store personal data. This, in turn, has led to a rise in the number of cyber crimes, ranging from minor breaches to global-scale attacks impacting billions of users – such as in the case of Yahoo. Within the U.S. alone, 1802 cases of data compromise were reported in 2022. This was a marked increase from the 447 cases reported a decade prior. The high price of data protection As of 2022, the average cost of a single data breach across all industries worldwide stood at around 4.35 million U.S. dollars. This was found to be most costly in the healthcare sector, with each leak reported to have cost the affected party a hefty 10.1 million U.S. dollars. The financial segment followed closely behind. Here, each breach resulted in a loss of approximately 6 million U.S. dollars - 1.5 million more than the global average.

  20. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    • arcticdata.io
    grib
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1940 - Jun 24, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2022). London's Population Over Time [Dataset]. https://www.kaggle.com/datasets/thedevastator/the-future-of-london-s-population-central-trend/data
Organization logo

London's Population Over Time

For trend prediction London's population

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 25, 2022
Dataset provided by
Kaggle
Authors
The Devastator
Area covered
London
Description

London's Population Over Time

For trend prediction London's population

By Eva Murray [source]

About this dataset

This file contains data on the projected population of London from 2011 to 2050. The data comes from the London Datastore and offers a glimpse into the future of one of the world's most populous cities

How to use the dataset

Research Ideas

  • Predicting crime rates based on population growth
  • Determining which areas of London will need more infrastructure to accommodate the growing population
  • Planning for different marketing and advertising strategies based on demographics

Acknowledgements

Data Source

License

License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

Columns

File: central_trend_2017_base.csv | Column name | Description | |:--------------|:------------------------------------| | gss_code | The GSS code for the area. (String) | | district | The name of the district. (String) | | component | The population component. (String) | | sex | The sex of the population. (String) | | age | The age of the population. (String) | | 2011 | The population in 2011. (Integer) | | 2012 | The population in 2012. (Integer) | | 2013 | The population in 2013. (Integer) | | 2014 | The population in 2014. (Integer) | | 2015 | The population in 2015. (Integer) | | 2016 | The population in 2016. (Integer) | | 2017 | The population in 2017. (Integer) | | 2018 | The population in 2018. (Integer) | | 2019 | The population in 2019. (Integer) | | 2020 | The population in 2020. (Integer) | | 2021 | The population in 2021. (Integer) | | 2022 | The population in 2022. (Integer) | | 2023 | The population in 2023. (Integer) | | 2024 | The population in 2024. (Integer) | | 2025 | The population in 2025. (Integer) | | 2026 | The population in 2026. (Integer) | | 2027 | The population in 2027. (Integer) | | 2028 | The population in 2028. (Integer) | | 2029 | The population in 2029. (Integer) | | 2030 | The population in 2030. (Integer) | | 2031 | The population in 2031. (Integer) | | 2032 | The population in 2032. (Integer) | | 2033 | The population in 2033. (Integer) | | 2034 | The population in 2034. (Integer) | | 2035 | The population in 2035. (Integer) | | 2036 | The population in 2036. (Integer) | | 2037 | The population in 2037. (Integer) | | 2038 | The population in 2038. (Integer) | | 2039 | The population in 20 |

Acknowledgements

If you use this dataset in your research, please credit Eva Murray.

Search
Clear search
Close search
Google apps
Main menu