Updates are delayed due to technical difficulties. How many people are staying at home? How far are people traveling when they don’t stay home? Which states and counties have more people taking trips? The Bureau of Transportation Statistics (BTS) now provides answers to those questions through our new mobility statistics. The Trips by Distance data and number of people staying home and not staying home are estimated for the Bureau of Transportation Statistics by the Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland. The travel statistics are produced from an anonymized national panel of mobile device data from multiple sources. All data sources used in the creation of the metrics contain no personal information. Data analysis is conducted at the aggregate national, state, and county levels. A weighting procedure expands the sample of millions of mobile devices, so the results are representative of the entire population in a nation, state, or county. To assure confidentiality and support data quality, no data are reported for a county if it has fewer than 50 devices in the sample on any given day. Trips are defined as movements that include a stay of longer than 10 minutes at an anonymized location away from home. Home locations are imputed on a weekly basis. A movement with multiple stays of longer than 10 minutes before returning home is counted as multiple trips. Trips capture travel by all modes of transportation. including driving, rail, transit, and air. The daily travel estimates are from a mobile device data panel from merged multiple data sources that address the geographic and temporal sample variation issues often observed in a single data source. The merged data panel only includes mobile devices whose anonymized location data meet a set of data quality standards, which further ensures the overall data quality and consistency. The data quality standards consider both temporal frequency and spatial accuracy of anonymized location point observations, temporal coverage and representativeness at the device level, spatial representativeness at the sample and county level, etc. A multi-level weighting method that employs both device and trip-level weights expands the sample to the underlying population at the county and state levels, before travel statistics are computed. These data are experimental and may not meet all of our quality standards. Experimental data products are created using new data sources or methodologies that benefit data users in the absence of other relevant products. We are seeking feedback from data users and stakeholders on the quality and usefulness of these new products. Experimental data products that meet our quality standards and demonstrate sufficient user demand may enter regular production if resources permit.
Metadata
* C02163V02608
: Code for method of booking.
* Method of Booking
: Information about the method used for booking.
* C02276V02746
: Code for Domestic or Outbound.
* Domestic or Outbound
: Indicates whether the booking is for domestic travel (within the same country) or outbound travel (outside of the country).
* TLIST(Q1)
: Code for Quarter of the Year.
* Quarter
: Indicates the quarter of the year in which the booking was made.
* STATISTIC
: Code of label for statistical measures
* Statistic Label
: Contains labels or identifiers for different statistical measures or metrics associated with the bookings.
* UNIT
: Specifies the unit of measurement for the statistic values in the dataset. For example.
* VALUE
: Contains the actual values of the statistics corresponding to the respective labels in the "STATISTIC" column.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The dataset comprises over 12,000 chat conversations, each focusing on specific Travel related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Travel topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Travel use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in English Travel interactions. This diversity ensures the dataset accurately represents the language used by English speakers in Travel contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to English Travel interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Travel customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
Accessible Tables and Improved Quality
As part of the Analysis Function Reproducible Analytical Pipeline Strategy, processes to create all National Travel Survey (NTS) statistics tables have been improved to follow the principles of Reproducible Analytical Pipelines (RAP). This has resulted in improved efficiency and quality of NTS tables and therefore some historical estimates have seen very minor change, at least the fifth decimal place.
All NTS tables have also been redesigned in an accessible format where they can be used by as many people as possible, including people with an impaired vision, motor difficulties, cognitive impairments or learning disabilities and deafness or impaired hearing.
If you wish to provide feedback on these changes then please email national.travelsurvey@dft.gov.uk.
Revision to table NTS9919
On the 16th April 2025, the figures in table NTS9919 have been revised and recalculated to include only day 1 of the travel diary where short walks of less than a mile are recorded (from 2017 onwards), whereas previous versions included all days. This is to more accurately capture the proportion of trips which include short walks before a surface rail stage. This revision has resulted in fewer available breakdowns than previously published due to the smaller sample sizes.
NTS0303: https://assets.publishing.service.gov.uk/media/66ce0f118e33f28aae7e1f75/nts0303.ods">Average number of trips, stages, miles and time spent travelling by mode: England, 2002 onwards (ODS, 53.9 KB)
NTS0308: https://assets.publishing.service.gov.uk/media/66ce0f128e33f28aae7e1f76/nts0308.ods">Average number of trips and distance travelled by trip length and main mode; England, 2002 onwards (ODS, 191 KB)
NTS0312: https://assets.publishing.service.gov.uk/media/66ce0f12bc00d93a0c7e1f71/nts0312.ods">Walks of 20 minutes or more by age and frequency: England, 2002 onwards (ODS, 35.1 KB)
NTS0313: https://assets.publishing.service.gov.uk/media/66ce0f12bc00d93a0c7e1f72/nts0313.ods">Frequency of use of different transport modes: England, 2003 onwards (ODS, 27.1 KB)
NTS0412: https://assets.publishing.service.gov.uk/media/66ce0f1325c035a11941f653/nts0412.ods">Commuter trips and distance by employment status and main mode: England, 2002 onwards (ODS, 53.8 KB)
NTS0504: https://assets.publishing.service.gov.uk/media/66ce0f141aaf41b21139cf7d/nts0504.ods">Average number of trips by day of the week or month and purpose or main mode: England, 2002 onwards (ODS, 141 KB)
<h2 id=
Travel time reliability information includes static data about traffic speeds or trip times that capture historic variations from day to day, and it can help individuals understand the level of variation in traffic. Unlike real-time travel time information, which provides a current snapshot of trip conditions and travel time, reliability information can be used to plan and budget in advance for a trip. Travel time reliability information can improve urban mobility by conveying reliability-related information to system users so that they can make informed decisions about their travel. Data files in this zipped package include macro-enabled Microsoft Excel spreadsheets. These spreadsheets operate as interactive games. To save them into open formats would destroy this functionality. Therefore the macro-enabled spreadsheets are left as-is. There were opened prior to ingest in this repository using Microsoft Excel 2010. This dataset supports SHRP 2 report S2-L14-RW-1, Effectiveness of different approaches to disseminating traveler information on travel time reliability. Zip contains 628 MB. Files were accessed with Microsoft Excel 2016. Data will be preserved as it is. For the publication see: https://rosap.ntl.bts.gov/view/dot/3607
List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)
https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional dat
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5
If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD
The following text is a summary of the information in the above Data Descriptor.
The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.
The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.
These maps represent a unique global representation of physical access to essential services offered by cities and ports.
The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).
travel_time_to_ports_x (x ranges from 1 to 5)
The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.
Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes
Data type Byte (16 bit Unsigned Integer)
No data value 65535
Flags None
Spatial resolution 30 arc seconds
Spatial extent
Upper left -180, 85
Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)
Temporal resolution 2015
Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.
Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.
The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.
Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points
The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).
Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.
Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.
This process and results are included in the validation zip file.
Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.
The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.
The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.
The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their place of study, for the census usually resident population count who are studying (part time or full time), by main means of travel to education from the 2018 and 2023 Censuses.
The main means of travel to education categories are:
Main means of travel to education is the usual method a person used to travel the longest distance to their place of study.
Educational institution address is the physical location of the individual’s place of study. Educational institutions include early childhood education, primary school, secondary school, and tertiary education institutions. For individuals who study at home, their educational institution address is the same as their usual residence address.
Educational institution address is coded to the most detailed geography possible from the available information. This dataset only includes travel to education information for individuals whose educational institution address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the census usually resident population count who are studying (part time or full time) for that region. Educational institution address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Educational institution address time series
Educational institution address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Educational institution address – 2023 Census: Information by concept has more information.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of educational institution address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to education quality rating
Main means of travel to education is rated as moderate quality.
Main means of travel to education – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Educational institution address quality rating
Educational institution address is rated as moderate quality.
Educational institution address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
This is the dataset of World's most visited Countries by international travellers. France has the most visitors in 2021 and dataset contains data of 50 countries. Spain is the second country for tourists.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tourist Arrivals in the United States increased to 5957985 in April from 5410331 in March of 2025. This dataset provides - United States Tourist Arrivals- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There's a story behind every dataset and here's your opportunity to share yours.
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual estimates of visits and spending by UK residents abroad. Also includes data on nights, purpose, main country visited and mode of travel. Breakdowns by length of stay and nationality are covered. In 2019, new methods were introduced for this dataset. The 2009 to 2019 edition supersedes all previous time series editions of this dataset. We advise against using all editions listed before the 2019 edition.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.
The main means of travel to work categories are:
Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.
Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.
Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Workplace address time series
Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.
Working at home
In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to work quality rating
Main means of travel to work is rated as moderate quality.
Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Workplace address quality rating
Workplace address is rated as moderate quality.
Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Please refer to the downloadable XLSX attachment (http://bit.ly/SFMTATravelSurvey2019) for the complete dataset, metadata, and instructions for use. This workbook provides data and data dictionaries for the SFMTA 2019 Travel Decision Survey. On behalf of San Francisco Municipal Transportation Agency (SFMTA), Corey, Canapary & Galanis (CC&G) undertook a Mode Share Survey within the City and County of San Francisco as well as the eight surrounding Bay Area counties of Alameda, Contra Costa, San Mateo, Marin, Santa Clara, Napa, Sonoma and Solano. The primary goals of this study were to: • Assess percent mode share for travel in San Francisco for evaluation of the SFMTA Strategic Objective 2.2: Mode Share target of 80% sustainable travel by 2030. • Evaluate the above statement based on the following parameters: number of trips to, from, and within San Francisco by Bay Area residents. Trips by visitors to the Bay Area and for commercial purposes are not included. • Provide additional trip details, including trip purpose for each trip in the mode share question series. • Collect demographic data on the population of Bay Area residents who travel to, from, and within San Francisco. • Collect data on travel behavior and opinions that support other SFMTA strategy and project evaluation needs. The survey was conducted as a telephone study among 801 Bay Area residents aged 18 and older. Interviewing was conducted in English, Spanish, Mandarin, Cantonese, and Tagalog. Surveying was conducted via random digit dial (RDD) and cell phone sample. All survey datasets incorporate respondent weighting based on age and home _location; utilize the “weight” field when appropriate in your analysis. The survey period for this survey is as follows: 2019: May - August 2019 The margin of error is related to sample size (n). For the total sample, the margin of error is 3.3% for a confidence level of 95%. When looking at subsets of the data, such as just the SF population, just the female population, or just the population of people who bicycle, the sample size decreases and the margin of error increases. Below is a guide of the margin of error for different samples sizes. Be cautious in making conclusions based off of small sample sizes. At the 95% confidence level is: • n = 801(Total Sample). Margin of error = +/- 3.3% • n = 400. Margin of error = +/- 4.85% • n = 100. Margin of error = +/- 9.80%
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household Travel Survey (HTS) is the most comprehensive source of personal travel data for the Sydney Greater Metropolitan Area (GMA). This data explores average weekday travel patterns for residents in Sydney GMA.\r \r The Household Travel Survey (HTS) collects information on personal travel behaviour. The study area for the survey is the Sydney Greater Metropolitan Area (GMA) which includes Sydney Greater Capital City Statistical Area (GCCSA), parts of Illawarra and Hunter regions. All residents of occupied private dwellings within the Sydney GMA are considered within scope of the survey and are randomly selected to participate.\r The HTS has been running continuously since 1997/981 and collects data for all days through the year – including during school and public holidays.\r \r Typically, approximately 2,000-3,000 households participate in the survey annually. Data is collected on all trips made over a 24-hour period by all members of the participating households.\r \r Annual estimates from the HTS are usually produced on a rolling basis using multiple years of pooled data for each reporting year2. All estimates are weighted to the Australian Bureau of Statistics’ Estimated Resident Population, corresponding to the year of collection3. Unless otherwise stated, all reported estimates are for an average weekday.\r \r \r \r Due to disruptions in data collection resulting from the lockdowns during the COVID-19 pandemic, post-COVID releases of HTS data are based on a lower sample size than previous HTS releases. To ensure integrity of the results and mitigate risk of sampling errors some post-COVID results have been reported differently to previous years. Please see below for more information on changes to HTS post-COVID (2020/21 onwards).\r \r 1. Data collection for the HTS was suspended during lock-down periods announced by the NSW Government due to COVID-19.\r \r 2. Exceptions apply to the estimates for 2020/21 which are based on a single year of sample as it was decided not to pool the sample with data collected pre-COVID-19. \r \r 3. HTS population estimates are also slightly lower than those reported in the ABS census as the survey excludes overseas visitors and those in non-private dwellings.\r \r Changes to HTS post-COVID (2020/21 onwards)\r \r HTS was suspended from late March 2020 to early October 2020 due to the impact and restrictions of COVID-19, and again from July 2021 to October 2021 following the Delta wave of COVID-19. Consequently, both the 2020/21 and 2021/22 releases are based on a reduced data collection period and smaller samples.\r \r Due to the impact of changed travel behaviours resulting from COVID-19 breaking previous trends, HTS releases since 2020/21 have been separated from pre-COVID-19 samples when pooled. As a result, HTS 2020/21 was based on a single wave of data collection which limited the breadth of geography available for release. Subsequent releases are based on pooled post-COVID samples to expand the geographies included with reliable estimates.\r \r Disruption to the data collection during, and post-COVID has led to some adjustments being made to the HTS estimates released post-COVID:\r \r SA3 level data has not been released for 2020/21 and 2021/22 due to low sample collection.\r LGA level data for 2021/22 has been released for selected LGAs when robust Relative Standard Error (RSE) for total trips are achieved\r Mode categories for all geographies are aggregated differently to the pre-COVID categories\r Purpose categories for some geographies are aggregated differently across 2020/21 and 2021/22.\r A new data release – for six cities as defined by the Greater Sydney Commission - is included since 2021/22.\r Please refer to the Data Document for 2022/23 (PDF, 262.54 KB) for further details.\r \r \r RELEASE NOTE\r \r The latest release of HTS data is 15 May 2025. This release includes Region, LGA, SA3 and Six Cities data for 2023/24. Please see 2023/24 Data Document for details.\r \r A revised dataset for LGAs and Six Cities for HTS 2022/23 data has also been included in this release on 15 May 2025. If you have downloaded HTS 2022/23 data by LGA and/or Six Cities from this link prior to 15/05/2025, we advise you replace it with the revised tables. If you have been supplied bespoke data tables for 2022/23 LGAs and/or Six Cities, please request updated tables.\r \r Revisions to HTS data may be made on previously published data as new sample data is appended to improve reliability of results. Please check this page for release dates to ensure you are using the most current version or create a subscription (https://opendata.transport.nsw.gov.au/subscriptions) to be notified of revisions and future releases.\r
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
* Filter for specific state - filters 02_vmt_state.csv
daily data for specific state.
* Filter counties by state - filters 03_vmt_county.csv
daily data for counties in specific state.
* Filter for specific county - filters 03_vmt_county.csv
daily data for specific county.
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
@(https://interactives.ap.org/vmt-map/)
This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Travel Review Rating Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/wirachleelakiatiwong/travel-review-rating-dataset on 30 September 2021.
--- Dataset description provided by original source is as follows ---
This data set has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine) : Travel Review Ratings Data Set. This data set is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated.
Attribute 1 : Unique user id Attribute 2 : Average ratings on churches Attribute 3 : Average ratings on resorts Attribute 4 : Average ratings on beaches Attribute 5 : Average ratings on parks Attribute 6 : Average ratings on theatres Attribute 7 : Average ratings on museums Attribute 8 : Average ratings on malls Attribute 9 : Average ratings on zoo Attribute 10 : Average ratings on restaurants Attribute 11 : Average ratings on pubs/bars Attribute 12 : Average ratings on local services Attribute 13 : Average ratings on burger/pizza shops Attribute 14 : Average ratings on hotels/other lodgings Attribute 15 : Average ratings on juice bars Attribute 16 : Average ratings on art galleries Attribute 17 : Average ratings on dance clubs Attribute 18 : Average ratings on swimming pools Attribute 19 : Average ratings on gyms Attribute 20 : Average ratings on bakeries Attribute 21 : Average ratings on beauty & spas Attribute 22 : Average ratings on cafes Attribute 23 : Average ratings on view points Attribute 24 : Average ratings on monuments Attribute 25 : Average ratings on gardens
This data set has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine) : Travel Review Ratings Data Set
The UCI page mentions the following publication as the original source of the data set: Renjith, Shini, A. Sreekumar, and M. Jathavedan. 2018. Evaluation of Partitioning Clustering Algorithms for Processing Social Media Data in Tourism Domain. In 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 12731. IEEE
I'm kind of people who love traveling. But sometimes I've problems like where should I visit? Are there somewhere interesting places matched with my lifestyle? Often I spent hours to search for interesting place to go out. Such a waste of time.
What if we can build a recommender system which can recommend you several interesting venue based on your preferences. With information from Google review, I'll try to divide Google review user into cluster of similar interest for further work of building recommender system based on thier preference.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: International Tourism: Number of Departures data was reported at 73,453,000.000 Person in 2015. This records an increase from the previous number of 68,176,000.000 Person for 2014. United States US: International Tourism: Number of Departures data is updated yearly, averaging 61,061,000.000 Person from Dec 1995 (Median) to 2015, with 21 observations. The data reached an all-time high of 73,453,000.000 Person in 2015 and a record low of 51,285,000.000 Person in 1995. United States US: International Tourism: Number of Departures data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Tourism Statistics. International outbound tourists are the number of departures that people make from their country of usual residence to any other country for any purpose other than a remunerated activity in the country visited. The data on outbound tourists refer to the number of departures, not to the number of people traveling. Thus a person who makes several trips from a country during a given period is counted each time as a new departure.; ; World Tourism Organization, Yearbook of Tourism Statistics, Compendium of Tourism Statistics and data files.; Gap-filled total;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Vehicle Miles Traveled During Covid-19 Lock-Downs ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/vehicle-miles-travelede on 13 February 2022.
--- Dataset description provided by original source is as follows ---
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Overview
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
Findings
- Nationally, data shows that vehicle travel in the US has doubled compared to the seven-day period ending April 13, which was the lowest VMT since the COVID-19 crisis began. In early December, travel reached a low not seen since May, with a small rise leading up to the Christmas holiday.
- Average vehicle miles traveled continues to be below what would be expected without a pandemic - down 38% compared to January 2020. September 4 reported the largest single day estimate of vehicle miles traveled since March 14.
- New Jersey, Michigan and New York are among the states with the largest relative uptick in travel at this point of the pandemic - they report almost two times the miles traveled compared to their lowest seven-day period. However, travel in New Jersey and New York is still much lower than expected without a pandemic. Other states such as New Mexico, Vermont and West Virginia have rebounded the least.
About This Data
The county level data is provided by StreetLight Data, Inc, a transportation analysis firm that measures travel patterns across the U.S.. The data is from their Vehicle Miles Traveled (VMT) Monitor which uses anonymized and aggregated data from smartphones and other GPS-enabled devices to provide county-by-county VMT metrics for more than 3,100 counties. The VMT Monitor provides an estimate of total vehicle miles travelled by residents of each county, each day since the COVID-19 crisis began (March 1, 2020), as well as a change from the baseline average daily VMT calculated for January 2020. Additional columns are calculations by AP.
Included Data
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
Additional Data Queries
* Filter for specific state - filters
02_vmt_state.csv
daily data for specific state.* Filter counties by state - filters
03_vmt_county.csv
daily data for counties in specific state.* Filter for specific county - filters
03_vmt_county.csv
daily data for specific county.Interactive
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
This dataset was created by Angeliki Kastanis and contains around 0 samples along with Date At Low, Mean7 County Vmt At Low, technical information and other features such as: - County Name - County Fips - and more.
- Analyze State Name in relation to Baseline Jan Vmt
- Study the influence of Date At Low on Mean7 County Vmt At Low
- More datasets
If you use this dataset in your research, please credit Angeliki Kastanis
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains information regarding the mobility of the residents of the Netherlands aged 6 or older in private households, so excluding residents of institutions and homes. The table contains per person per day /year an overview of the average number of trips, the average distance travelled and the average time travelled. These are regular trips on Dutch territory, including domestic holiday mobility. The distance travelled is based on stage information. Excluded in this table is mobility based on series of calls trips. The mobility behaviour is broken down by modes of travel, purposes of travel, population and region characteristics. The data used are retrieved from The Dutch National travel survey named Onderweg in Nederland (ODiN). Data available from: 2018
Status of the figures: The figures in this table are final.
Changes as of 4 July 2024: The figures for year 2023 are added.
When will new figures be published? Figures for the 2024 research year will be published in mid-2025
Updates are delayed due to technical difficulties. How many people are staying at home? How far are people traveling when they don’t stay home? Which states and counties have more people taking trips? The Bureau of Transportation Statistics (BTS) now provides answers to those questions through our new mobility statistics. The Trips by Distance data and number of people staying home and not staying home are estimated for the Bureau of Transportation Statistics by the Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland. The travel statistics are produced from an anonymized national panel of mobile device data from multiple sources. All data sources used in the creation of the metrics contain no personal information. Data analysis is conducted at the aggregate national, state, and county levels. A weighting procedure expands the sample of millions of mobile devices, so the results are representative of the entire population in a nation, state, or county. To assure confidentiality and support data quality, no data are reported for a county if it has fewer than 50 devices in the sample on any given day. Trips are defined as movements that include a stay of longer than 10 minutes at an anonymized location away from home. Home locations are imputed on a weekly basis. A movement with multiple stays of longer than 10 minutes before returning home is counted as multiple trips. Trips capture travel by all modes of transportation. including driving, rail, transit, and air. The daily travel estimates are from a mobile device data panel from merged multiple data sources that address the geographic and temporal sample variation issues often observed in a single data source. The merged data panel only includes mobile devices whose anonymized location data meet a set of data quality standards, which further ensures the overall data quality and consistency. The data quality standards consider both temporal frequency and spatial accuracy of anonymized location point observations, temporal coverage and representativeness at the device level, spatial representativeness at the sample and county level, etc. A multi-level weighting method that employs both device and trip-level weights expands the sample to the underlying population at the county and state levels, before travel statistics are computed. These data are experimental and may not meet all of our quality standards. Experimental data products are created using new data sources or methodologies that benefit data users in the absence of other relevant products. We are seeking feedback from data users and stakeholders on the quality and usefulness of these new products. Experimental data products that meet our quality standards and demonstrate sufficient user demand may enter regular production if resources permit.