https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Stock Market Dataset is designed for predictive analysis and machine learning applications in financial markets. It includes 13647 records of simulated stock trading data with features commonly used in stock price forecasting.
🔹 Key Features Date – Trading day timestamps (business days only) Open, High, Low, Close – Simulated stock prices Volume – Trading volume per day RSI (Relative Strength Index) – Measures market momentum MACD (Moving Average Convergence Divergence) – Trend-following momentum indicator Sentiment Score – Simulated market sentiment from financial news & social media Target – Binary label (1: Price goes up, 0: Price goes down) for next-day prediction This dataset is useful for training hybrid deep learning models such as LSTM, CNN, and Attention-based networks for stock market forecasting. It enables financial analysts, traders, and AI researchers to experiment with market trends, technical analysis, and sentiment-based predictions.
In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the essential files for conducting a dynamic stock market analysis using Power BI. The data is sourced from Yahoo Finance and includes historical stock prices, which can be dynamically updated by adding new stock codes to the provided Excel sheet.
Files Included: Power BI Report (.pbix): The interactive Power BI report that includes various visualizations such as Candle Charts, Line Charts for Support and Resistance, and Technical Indicators like SMA, EMA, Bollinger Bands, and RSI. The report is designed to provide a comprehensive analysis of stock performance over time.
Stock Data Excel Sheet (.xlsx): This Excel sheet is connected to the Power BI report and allows for dynamic data loading. By adding new stock codes to this sheet, the Power BI report automatically refreshes to include the new data, enabling continuous updates without manual intervention.
Overview and Chart Pages Snapshots for better understanding about the Report.
Key Features: Dynamic Data Loading: Easily update the dataset by adding new stock codes to the Excel sheet. The Power BI report will automatically pull the corresponding data from Yahoo Finance. Comprehensive Visualizations: Analyze stock trends using Candle Charts, identify key price levels with Support and Resistance lines, and explore market behavior through various technical indicators. Interactive Analysis: The Power BI report includes slicers and navigation buttons to switch between different time periods and visualizations, providing a tailored analysis experience. Use Cases: Ideal for financial analysts, traders, or anyone interested in conducting a detailed stock market analysis. Can be used to monitor the performance of individual stocks or compare trends across multiple stocks over time. Tags: Stock Market Power BI Financial Analysis Yahoo Finance Data Visualization
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global stock analysis software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach around USD 3.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing adoption of advanced analytics tools by individual investors and financial institutions to make informed investment decisions. The rising demand for automated trading systems and the integration of artificial intelligence (AI) and machine learning (ML) in stock analysis software are significant growth factors contributing to the market expansion.
One of the primary growth factors for the stock analysis software market is the increasing complexity and volume of financial data. With the exponential growth of data from various sources such as social media, news articles, and financial statements, investors and financial analysts require sophisticated tools to process and interpret this information accurately. Stock analysis software equipped with AI and ML algorithms can analyze vast datasets in real-time, providing valuable insights and predictive analytics that enhance investment strategies. Moreover, the growing trend of algorithmic trading, which relies heavily on high-speed data processing and automated decision-making, is further propelling the market growth.
Another crucial growth driver is the rising awareness and adoption of stock analysis software among individual investors. As more individuals seek to actively manage their investment portfolios, there is a growing demand for user-friendly and cost-effective stock analysis tools that offer comprehensive market analysis, technical indicators, and personalized investment recommendations. The proliferation of mobile applications and the increasing accessibility of cloud-based stock analysis solutions have made it easier for retail investors to access advanced analytical tools, thereby contributing to market expansion.
The integration of innovative technologies such as natural language processing (NLP) and sentiment analysis into stock analysis software is also a significant growth factor. These technologies enable the software to interpret and analyze unstructured data from news articles, social media, and other textual sources to gauge market sentiment and predict stock price movements. This capability is particularly valuable in today's fast-paced financial markets, where sentiment and news events can have a substantial impact on stock prices. The continuous advancements in AI and NLP technologies are expected to drive further innovations and improvements in stock analysis software, thereby boosting market growth.
In the evolving landscape of financial technology, Investor Relations Tools have become indispensable for companies seeking to maintain transparent and effective communication with their stakeholders. These tools facilitate seamless interaction between companies and their investors, providing real-time updates, financial reports, and strategic insights. By leveraging these tools, companies can enhance their investor engagement strategies, build trust, and foster long-term relationships with their shareholders. The integration of advanced analytics and AI-driven insights into Investor Relations Tools further empowers companies to tailor their communication strategies, ensuring that they meet the diverse needs of their investor base. As the demand for transparency and accountability in financial markets continues to grow, the adoption of sophisticated Investor Relations Tools is expected to rise, playing a crucial role in the broader ecosystem of stock analysis software.
From a regional perspective, North America is anticipated to hold the largest market share due to the high concentration of financial institutions, brokerage firms, and individual investors in the region. The presence of key market players and the early adoption of advanced technologies also contribute to the dominant position of North America in the global stock analysis software market. Additionally, the Asia Pacific region is expected to witness significant growth during the forecast period, driven by the increasing number of retail investors, rapid economic development, and the growing financial markets in countries such as China and India.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, fell to 3424 points on June 27, 2025, losing 0.70% from the previous session. Over the past month, the index has climbed 2.52% and is up 15.39% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on June of 2025.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive collection of historical stock data for all the companies listed on the S&P 500 index. It includes details such as daily open, close, high, low prices, and volume for each listed company. The dataset is intended to help researchers, investors, and data scientists gain insights into the performance of these companies and explore trends, patterns, or anomalies in the stock market.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides a comprehensive historical record of stock prices from the Dhaka Stock Exchange (DSE), the primary stock exchange of Bangladesh. Spanning from January 1, 2000, to February 26, 2025, it offers a detailed look into the daily trading activity of 464 unique stocks.
This dataset was meticulously compiled and cleaned to provide a valuable resource for researchers, analysts, and investors interested in the Dhaka Stock Exchange.
While efforts have been made to ensure the accuracy of the data, users are advised to conduct their own due diligence and validation before making any investment decisions based on this dataset.
This description highlights the key aspects of your dataset, its potential uses, and its reliability. Feel free to adjust it further based on any specific details or insights you want to emphasize!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.
However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.
2 Data-set Introduction
2.1 Data Collection
We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:
The headline must have one or more words directly or indirectly related to COVID-19.
The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
Avoid taking duplicate reports.
Maintain a time frame for the above mentioned newspapers.
To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.
2.2 Data Pre-processing and Statistics
Some pre-processing steps performed on the newspaper report dataset are as follows:
Remove hyperlinks.
Remove non-English alphanumeric characters.
Remove stop words.
Lemmatize text.
While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.
The primary data statistics of the two dataset are shown in Table 1 and 2.
Table 1: Covid-News-USA-NNK data statistics
No of words per headline
7 to 20
No of words per body content
150 to 2100
Table 2: Covid-News-BD-NNK data statistics No of words per headline
10 to 20
No of words per body content
100 to 1500
2.3 Dataset Repository
We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.
3 Literature Review
Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.
Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].
Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.
Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.
4 Our experiments and Result analysis
We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:
In February, both the news paper have talked about China and source of the outbreak.
StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
Washington Post discussed global issues more than StarTribune.
StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.
We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases
where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Stock Market Dataset is designed for predictive analysis and machine learning applications in financial markets. It includes 13647 records of simulated stock trading data with features commonly used in stock price forecasting.
🔹 Key Features Date – Trading day timestamps (business days only) Open, High, Low, Close – Simulated stock prices Volume – Trading volume per day RSI (Relative Strength Index) – Measures market momentum MACD (Moving Average Convergence Divergence) – Trend-following momentum indicator Sentiment Score – Simulated market sentiment from financial news & social media Target – Binary label (1: Price goes up, 0: Price goes down) for next-day prediction This dataset is useful for training hybrid deep learning models such as LSTM, CNN, and Attention-based networks for stock market forecasting. It enables financial analysts, traders, and AI researchers to experiment with market trends, technical analysis, and sentiment-based predictions.