Facebook
TwitterThis data set includes tables on persons living with HIV/AIDS, newly diagnosed HIV cases and all cause deaths in HIV/AIDS cases by gender, age, race/ethnicity and transmission category.
In all tables, cases are reported as of December 31 of the given year, as reported by December 31, 2024, to allow a minimum of 12 months reporting delay.
Gender is determined by both current gender and sex at birth variables; transgender values are assigned when current gender is identified as "Transgender" or when a discrepancy is identified between a person's sex at birth and their current gender (e.g., cases where sex at birth is "Male" and current gender is "Female" will become Transgender: Male to Female.) Prior to 2003, Asian and Native Hawaiian/Pacific Islanders were classified as one combined group. In order to present these race/ethnicities separately, living cases recorded under this combined classification were split and redistributed according to their expected proportional population representation estimated from post-2003 data.
Facebook
TwitterIn the time of epidemics, what is the status of HIV AIDS across the world, where does each country stands, is it getting any better. The data set should be helpful to explore much more about above mentioned factors.
The data set contains data on
- No. of people living with HIV AIDS
- No. of deaths due to HIV AIDS
- No. of cases among adults (19-45)
- Prevention of mother-to-child transmission estimates
- ART (Anti Retro-viral Therapy) coverage among people living with HIV estimates
- ART (Anti Retro-viral Therapy) coverage among children estimates
https://github.com/imdevskp/hiv_aids_who_unesco_data_cleaning
Photo by Anna Shvets from Pexels https://www.pexels.com/photo/red-ribbon-on-white-surface-3900425/
- COVID-19 - https://www.kaggle.com/imdevskp/corona-virus-report
- MERS - https://www.kaggle.com/imdevskp/mers-outbreak-dataset-20122019
- Ebola Western Africa 2014 Outbreak - https://www.kaggle.com/imdevskp/ebola-outbreak-20142016-complete-dataset
- H1N1 | Swine Flu 2009 Pandemic Dataset - https://www.kaggle.com/imdevskp/h1n1-swine-flu-2009-pandemic-dataset
- SARS 2003 Pandemic - https://www.kaggle.com/imdevskp/sars-outbreak-2003-complete-dataset
- HIV AIDS - https://www.kaggle.com/imdevskp/hiv-aids-dataset
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset provides a comprehensive look at HIV/AIDS adult prevalence rates, the number of people living with HIV, and annual deaths across different countries. It is based on publicly available data sources such as the CIA World Factbook, UNAIDS AIDS Info, and other global health organizations. The dataset primarily focuses on adult HIV prevalence (ages 15–49) and includes estimates from recent years (e.g., 2023–2024).
This dataset can be used for: - Epidemiological Analysis: Understanding the regional distribution of HIV/AIDS and identifying high-prevalence areas. - Predictive Modeling: Developing machine learning models to predict HIV prevalence trends or identify risk factors. - Resource Allocation: Informing policymakers about regions requiring urgent intervention or resource allocation. - Health Outcome Monitoring: Tracking progress in combating HIV/AIDS over time. - Social Determinants Research: Analyzing the relationship between socio-economic factors and HIV prevalence.
The dataset is ethically sourced from publicly available and credible platforms such as the CIA World Factbook, UNAIDS, and WHO. These organizations ensure transparency and ethical standards in data collection, protecting individual privacy while providing aggregate statistics for research purposes.
This dataset serves as a valuable tool for researchers, policymakers, and public health professionals in addressing the global challenge of HIV/AIDS.
Facebook
TwitterThe following slide set is available to download for presentational use:
Data on all HIV diagnoses, AIDS and deaths among people diagnosed with HIV are collected from HIV outpatient clinics, laboratories and other healthcare settings. Data relating to people living with HIV is collected from HIV outpatient clinics. Data relates to England, Wales, Northern Ireland and Scotland, unless stated.
HIV testing, pre-exposure prophylaxis, and post-exposure prophylaxis data relates to activity at sexual health services in England only.
View the pre-release access lists for these statistics.
Previous reports, data tables and slide sets are also available for:
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Additional information on HIV surveillance can be found in the HIV Action Plan for England monitoring and evaluation framework reports. Other HIV in the UK reports published by Public Health England (PHE) are available online.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Source: The World Bank Last Updated: 10/26/2023 Database: World Development Indicators Series: Prevalence of HIV, total (% of population ages 15-49) Adults (ages 15+) and children (ages 0-14) newly infected with HIV Adults (ages 15-49) newly infected with HIV Antiretroviral therapy coverage (% of people living with HIV) Antiretroviral therapy coverage for PMTCT (% of pregnant women living with HIV) Children (0-14) living with HIV Children (ages 0-14) newly infected with HIV Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24) Incidence of HIV, ages 15-49 (per 1,000 uninfected population ages 15-49) Incidence of HIV, all (per 1,000 uninfected population) Prevalence of HIV, female (% ages 15-24) Prevalence of HIV, male (% ages 15-24) Women's share of population ages 15+ living with HIV (%) Young people (ages 15-24) newly infected with HIV
Facebook
TwitterIn 2021, 1.9 million people in Nigeria were living with HIV. Women were the most affected group, counting 1.1 thousand individuals. Also, children up to age 14 who were HIV positive equaled 170 thousand.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
People aged 15 to 59 years seen at HIV services in the UK, expressed as a rate per 1,000 population.Data is presented by area of residence, and exclude people diagnosed with HIV in England who are resident in Wales, Scotland, Northern Ireland or abroad.RationaleThe geographical distribution of people seen for HIV care and treatment is not uniform across or within regions in England. Knowledge of local diagnosed HIV prevalence and identification of local risk groups can be used to help direct resources for HIV prevention and treatment.In 2008, http://www.bhiva.org/HIV-testing-guidelines.aspx recommended that Local Authority and NHS bodies consider implementing routine HIV testing for all general medical admissions as well as new registrants in primary care where the diagnosed HIV prevalence exceeds 2 in 1,000 population aged 15 to 59 years.In 2017, guidelines were updated by https://www.nice.org.uk/guidance/NG60 which is co-badged with Public Health England. This guidance continues to define high HIV prevalence local authorities as those with a diagnosed HIV prevalence of between 2 and 5 per 1,000 and extremely high prevalence local authorities as those with a diagnosed HIV prevalence of 5 or more per 1,000 people aged 15 to 59 years.When this is applied to national late HIV diagnosis data, it shows that two-thirds of late HIV diagnoses occur in high-prevalence and extremely-high-prevalence local authorities. This means that if this recommendation is successfully applied in high and extremely-high-prevalence areas, it could potentially affect two-thirds of late diagnoses nationally.Local authorities should find out their diagnosed prevalence published in UKHSA's http://fingertips.phe.org.uk/profile/sexualhealth , as well as that of surrounding areas and adapt their strategy for HIV testing using the national guidelines.Commissioners can use these data to plan and ensure access to comprehensive and specialist local HIV care and treatment for HIV diagnosed individuals according to the http://www.medfash.org.uk/uploads/files/p17abl6hvc4p71ovpkr81ugsh60v.pdf and http://www.bhiva.org/monitoring-guidelines.aspx .Definition of numeratorThe number of people (aged 15 to 59 years) living with a diagnosed HIV infection and accessing HIV care at an NHS service in the UK and who are resident in England.Definition of denominatorResident population aged 15 to 59.The denominators for 2011 to 2023 are taken from the respective 2011 to 2023 Office for National Statistics (ONS) revised population estimates from the 2021 Census.Further details on the ONS census are available from the https://www.ons.gov.uk/census .CaveatsData is presented by geographical area of residence. Where data on residence were unavailable, residence have been assigned to the local health area of care.Every effort is made to ensure accuracy and completeness of the data, including web-based reporting with integrated checks on data quality. The overall data quality is high as the dataset is used for commissioning purposes and for the national allocation of funding. However, responsibility for the accuracy and completeness of data lies with the reporting service.Data is as reported but rely on ‘record linkage’ to integrate data and ‘de-duplication’ to prevent double counting of the same individual. The data may not be representative in areas where residence information is not known for a significant proportion of people accessing HIV care.Data supplied for previous years are updated on an annual basis due to clinic or laboratory resubmissions and improvements to data cleaning. Data may therefore differ from previous publications.Values are benchmarked against set thresholds and categorised into the following groups: <2 (low), 2 to 5 (high) and≥5 (extremely high). These have been determined by developments in national testing guidelines.The data reported in 2020 and 2021 is impacted by the reconfiguration of sexual health services during the national response to COVID-19.
Facebook
TwitterData Dictionary JANUARY, 2020 Gender Inequality & HIV/AIDS
Country The country the data corresponds to.The data is a subset of UNICEF’s ‘Key HIV epidemiology indicators for children and adolescents aged 10-19, 1990-2019.’This UNICEF data is sourced from UNAIDS 2020 estimates, which provide ‘modeled estimates using the best available epidemiological and programmatic data to track the HIV epidemic’. Modeled estimates are used because counting the true numbers would require regularly testing entire populations for HIV, and investigating all deaths, which is ‘logistically impossible and ethically problematic.’ For more information on the methodology behind these estimates, see the full UNAIDS 2020 report.
UNICEF Region The region the country belongs to - this dataset includes countries from Eastern & Southern Africa, and West & Central Africa.
Year The year the estimates corresponds to.
Sex Whether the estimates refer to men or women.
Age The age group that the estimates refer to - this dataset contains only estimates for adolescent women and men between the ages of 10-19.
Estimated incidence rate of new HIV infection per 1000 uninfected population The estimated number of new HIV infections, for every 1000 uninfected people in the relevant group. Note - some fields were displayed as ‘<0.01’ in the original data, however these have been rounded up to 0.01 in order to make the field numeric.
Estimated number of annual AIDS related deaths The estimated number of annual AIDS related deaths in the relevant group, to the nearest 100. Note - in the original data, values below 500 were split into the following groups; <500, <200, and <100. To make the field numeric, these have been rounded to 500, 200, and 100 respectively.
Estimated number of annual new HIV infections The estimated number of new annual HIV infections in the relevant group. Note - in the original data, values below 500 were split into the following groups; <500, <200, and <100. To make the field numeric, these have been rounded to 500, 200, and 100 respectively.
The estimated number of people living with HIV in the relevant group. Note - in the original data, values below 500 were split into the following groups; <500, <200, and <100. To make the field numeric, these have been rounded to 500, 200, and 100 respectively.
Estimated rate of annual AIDS related deaths per 100,000 population The estimated number of annual AIDS related deaths, for every 100,000 people in the relevant group. Note - some fields were displayed as ‘<0.01’ in the original data, however these have been rounded up to 0.01 in order to make the field numeric.
Data Source: UNICEF ‘Key HIV epidemiology indicators for children and adolescents aged 10-19, 1990-2019
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set includes tables on persons living with HIV/AIDS, newly diagnosed HIV cases and all cause deaths in HIV/AIDS cases by gender, age, race/ethnicity and transmission category. In all tables, cases are reported as of December 31 of the given year, as reported by January 9, 2019, to allow a minimum of 12 months reporting delay. Gender is determined by both current gender and sex at birth variables; transgender values are assigned when current gender is identified as "Transgender" or when a discrepancy is identified between a person's sex at birth and their current gender (e.g., cases where sex at birth is "Male" and current gender is "Female" will become Transgender: Male to Female.) Prior to 2003, Asian and Native Hawaiian/Pacific Islanders were classified as one combined group. In order to present these race/ethnicities separately, living cases recorded under this combined classification were split and redistributed according to their expected proportional population representation estimated from post-2003 data.
Facebook
TwitterThis data set contains EIIHA populations who received services funded by Ryan White Part A Grant. EIIHA is Early Identification of Individuals with HIV/AIDS (EIIHA) The special populations (EIIHA) with HIV are: Black MSM = Black men and Black transgender women who have sex with men. Latinx MSM = Latinx men and Latinx Transgender women who have sex with men. Black Women - Black women Transgender - Transgender men and women. These populations have the biggest disparities of people living with HIV. Other data is the number of clients and units used in each service category in the Ryan White Part A, a grant that provides services for those with HIV.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides detailed insights into the prevalence of HIV/AIDS among adults (ages 15–49) across various countries and regions. The data is primarily sourced from the CIA World Factbook and the UNAIDS AIDSinfo platform and reflects the most recent available estimates as of 2022–2024.
What’s Included:
Country/Region – The name of each nation or area.
Adult Prevalence of HIV/AIDS (%) – The percentage of adults estimated to be living with HIV.
Number of People with HIV/AIDS – Estimated count of people infected in each country.
Annual Deaths from HIV/AIDS – Estimated number of HIV/AIDS-related deaths per year.
Year of Estimate – The year the data was reported or estimated.
Key Highlights:
Global Prevalence: Around 0.7% of the global population was living with HIV in 2022, affecting nearly 39 million people.
Hotspots: The epidemic is most severe in Southern Africa, with countries like Eswatini, Botswana, Lesotho, and Zimbabwe reporting adult prevalence rates above 20%.
High Burden Countries:
South Africa: 17.3% prevalence, approximately 9.2 million infected
Tanzania: approximately 7.49 million
Mozambique: approximately 2.48 million
Nigeria: approximately 2.45 million (1.3% prevalence)
Notes:
Data may vary in accuracy and is subject to ongoing updates and verification.
Some entries include a dash ("-") where data was not published or available.
Countries with over 1% adult prevalence are categorized under Generalized HIV Epidemics (GHEs) by UNAIDS.
Facebook
TwitterThe 2005 Guyana HIV/AIDS Indicator Survey (GAIS) is the first household-based, comprehensive survey on HIV/AIDS to be carried out in Guyana. The 2005 GAIS was implemented by the Guyana Responsible Parenthood Association (GRPA) for the Ministry of Health (MoH). ORC Macro of Calverton, Maryland provided technical assistance to the project through its contract with the U.S. Agency for International Development (USAID) under the MEASURE DHS program. Funding to cover technical assistance by ORC Macro and for local costs was provided in their entirety by USAID/Washington and USAID/Guyana.
The 2005 GAIS is a nationally representative sample survey of women and men age 15-49 initiated by MoH with the purpose of obtaining national baseline data for indicators on knowledge/awareness, attitudes, and behavior regarding HIV/AIDS. The survey data can be effectively used to calculate valuable indicators of the President’s Emergency Plan for AIDS Relief (PEPFAR), the Joint United Nations Program on HIV/AIDS (UNAIDS), the United Nations General Assembly Special Session (UNGASS), the United Nations Children Fund (UNICEF) Orphan and Vulnerable Children unit (OVC), and the World Health Organization (WHO), among others. The overall goal of the survey was to provide program managers and policymakers involved in HIV/AIDS programs with information needed to monitor and evaluate existing programs; and to effectively plan and implement future interventions, including resource mobilization and allocation, for combating the HIV/AIDS epidemic in Guyana.
Other objectives of the 2005 GAIS include the support of dissemination and utilization of the results in planning, managing and improving family planning and health services in the country; and enhancing the survey capabilities of the institutions involved in order to facilitate the implementation of surveys of this type in the future.
The 2005 GAIS sampled over 3,000 households and completed interviews with 2,425 eligible women and 1,875 eligible men. In addition to the data on HIV/AIDS indicators, data on the characteristics of households and its members, malaria, infant and child mortality, tuberculosis, fertility, and family planning were also collected.
National
Sample survey data [ssd]
The primary objective of the 2005 GAIS is to provide estimates with acceptable precision for important population characteristics such as HIV/AIDS related knowledge, attitudes, and behavior. The population to be covered by the 2005 GAIS was defined as the universe of all women and men age 15-49 in Guyana.
The major domains to be distinguished in the tabulation of important characteristics for the eligible population are: • Guyana as a whole • The urban area and the rural area each as a separate major domain • Georgetown and the remainder urban areas.
Administratively, Guyana is divided into 10 major regions. For census purposes, each region is further subdivided in enumeration districts (EDs). Each ED is classified as either urban or rural. There is a list of EDs that contains the number of households and population for each ED from the 2002 census. The list of EDs is grouped by administrative units as townships. The available demarcated cartographic material for each ED from the last census makes an adequate sample frame for the 2005 GAIS.
The sampling design had two stages with enumeration districts (EDs) as the primary sampling units (PSUs) and households as the secondary sampling units (SSUs). The standard design for the GAIS called for the selection of 120 EDs. Twenty-five households were selected by systematic random sampling from a full list of households from each of the selected enumeration districts for a total of 3,000 households. All women and men 15-49 years of age in the sample households were eligible to be interviewed with the individual questionnaire.
The database for the recently completed 2002 Census was used as a sampling frame to select the sampling units. In the census frame, EDs are grouped by urban-rural location within the ten administrative regions and they are also ordered in each administrative unit in serpentine fashion. Therefore, this stratification and ordering will be also reflected in the 2005 GAIS sample.
Based on response rates from other surveys in Guyana, around 3,000 interviews of women and somewhat fewer of men expected to be completed in the 3,000 households selected.
Several allocation schemes were considered for the sample of clusters for each urban-rural domain. One option was to allocate clusters to urban and rural areas proportionally to the population in the area. According to the census, the urban population represents only 29 percent of the population of the country. In this case, around 35 clusters out of the 120 would have been allocated to the urban area. Options to obtain the best allocation by region were also examined. It should be emphasized that optimality is not guaranteed at the regional level but the power for analysis is increased in the urban area of Georgetown by departing from proportionality. Upon further analysis of the different options, the selection of an equal number of clusters in each major domain (60 urban and 60 rural) was recommended for the 2005 GAIS. As a result of the nonproportionalallocation of the number of EDs for the urban-rural and regional domains, the household sample for the 2005 GAIS is not a self-weighted sample.
The 2005 GAIS sample of households was selected using a stratified two-stage cluster design consisting of 120 clusters. The first stage-units (primary sampling units or PSUs) are the enumeration areas used for the 2002 Population and Housing Census. The number of EDs (clusters) in each domain area was calculated dividing its total allocated number of households by the sample take (25 households for selection per ED). In each major domain, clusters are selected systematically with probability proportional to size.
The sampling procedures are more fully described in "Guyana HIV/AIDS Indicator Survey 2005 - Final Report" pp.135-138.
Face-to-face [f2f]
Two types of questionnaires were used in the survey, namely: the Household Questionnaire and the Individual Questionnaire. The contents of these questionnaires were based on model questionnaires developed by the MEASURE DHS program. In consultation with USAID/Guyana, MoH, GRPA, and other government agencies and local organizations, the model questionnaires were modified to reflect issues relevant to HIV/AIDS in Guyana. The questionnaires were finalized around mid-May.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. For each person listed, information was collected on sex, age, education, and relationship to the head of the household. An important purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview.
The Household Questionnaire also collected non-income proxy indicators about the household's dwelling unit, such as the source of water; type of toilet facilities; materials used for the floor, roof and walls of the house; and ownership of various durable goods and land. As part of the Malaria Module, questions were included on ownership and use of mosquito bednets.
The Individual Questionnaire was used to collect information from women and men age 15-49 years and covered the following topics: • Background characteristics (age, education, media exposure, employment, etc.) • Reproductive history (number of births and—for women—a birth history, birth registration, current pregnancy, and current family planning use) • Marriage and sexual activity • Husband’s background • Knowledge about HIV/AIDS and exposure to specific HIV-related mass media programs • Attitudes toward people living with HIV/AIDS • Knowledge and experience with HIV testing • Knowledge and symptoms of other sexually transmitted infections (STIs) • The malaria module and questions on tuberculosis
The processing of the GAIS questionnaires began in mid-July 2005, shortly after the beginning of fieldwork and during the first visit of the ORC Macro data processing specialist. Questionnaires for completed clusters (enumeration districts) were periodically submitted to GRPA offices in Georgetown, where they were edited by data processing personnel who had been trained specifically for this task. The concurrent processing of the data—standard for surveys participating in the DHS program—allowed GRPA to produce field-check tables to monitor response rates and other variables, and advise field teams of any problems that were detected during data entry. All data were entered twice, allowing 100 percent verification. Data processing, including data entry, data editing, and tabulations, was done using CSPro, a program developed by ORC Macro, the U.S. Bureau of Census, and SERPRO for processing surveys and censuses. The data entry and editing of the questionnaires was completed during a second visit by the ORC Macro specialist in mid-September. At this time, a clean data set was produced and basic tables with the basic HIV/AIDS indicators were run. The tables included in the current report were completed by the end of November 2005.
• From a total of 3,055 households in the sample, 2,800 were occupied. Among these households, interviews were completed in 2,608, for a response rate of 93 percent. • A total of 2,776 eligible women were identified and
Facebook
TwitterThis is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024 HIV Incidence Rate - This indicator shows the rate of adult/adolescent cases (age 13+) diagnosed with HIV (per 100,000 population). HIV is a significant and preventable public health problem. An estimated 16% of people with HIV in Maryland are undiagnosed. We have the knowledge and tools needed to slow the spread of HIV infection and improve the health of people living with HIV. Link to Data Details
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset refers to the Statistics Relating to Notification of HIV Aids Cases and Deaths in Mauritius for the year 2000 to 2023
Facebook
TwitterReports of Human immunodeficiency virus (HIV) diagnoses, diseases and deaths in HIV-infected persons
Facebook
TwitterThis indicator provides information about the rate of persons living with HIV (persons per 100,000 population).Human immunodeficiency virus (HIV) infection remains a significant public health concern, with more than 59,000 Los Angeles County residents estimated to be currently living with HIV. Certain communities, such as low-income communities, communities of color, and sexual and gender minority communities, bear a disproportionate burden of this epidemic. The Ending the HIV Epidemic national initiative strives to eliminate the US HIV epidemic by 2030, focusing on four key strategies: Diagnose, Treat, Prevent, and Respond. Achieving this goal requires a collaborative effort involving cities, community organizations, faith-based institutions, healthcare professionals, and businesses. Together, they can create an environment that promotes prevention, reduces stigma, and empowers individuals to safeguard themselves and their partners from HIV. Stakeholders can advance health equity by focusing on the most affected communities and sub-populations.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The ultimate goal of HIV treatment is to achieve viral suppression, which means the amount of HIV in the body is very low or undetectable. This is important for people with HIV to stay healthy, have improved quality of life, and live longer. People living with HIV who maintain viral suppression have effectively no risk of passing HIV to others. Texas DSHS is the source of this data. Diagnosed- received a diagnosis of HIV Linked to care*-visited an HIV heath care provider within 1 month (30 days) after learning they were HIV positive Received-** or were retained in care*** received medical care for HIV infection Viral suppression- their HIV “viral load” – the amount of HIV in the blood – was at a very low level.
Facebook
TwitterThe Find Ryan White HIV/AIDS Medical Care Providers tool is a locator that helps people living with HIV/AIDS access medical care and related services. Users can search for Ryan White-funded medical care providers near a specific complete address, city and state, state and county, or ZIP code. Search results are sorted by distance away and include the Ryan White HIV/AIDS facility name, address, approximate distance from the search point, telephone number, website address, and a link for driving directions. HRSA's Ryan White program funds an array of grants at the state and local levels in areas where most needed. These grants provide medical and support services to more than a half million people who otherwise would be unable to afford care.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Certain subpopulations like female sex workers (FSW), men who have sex with men (MSM), and people who inject drugs (PWID) often have higher prevalence of HIV/AIDS and are difficult to map directly due to stigma, discrimination, and criminalization. Fine-scale mapping of those populations contributes to the progress toward reducing the inequalities and ending the AIDS epidemic. In 2016 and 2017, the PLACE surveys were conducted at 3290 venues in 20 out of the total 28 districts in Malawi to estimate the FSW sizes. These venues represent a presence-only dataset where, instead of knowing both where people live and do not live (presence–absence data), only information about visited locations is available. In this study, we develop a Bayesian model for presence-only data and utilize the PLACE data to estimate the FSW size and uncertainty interval at a1.5×1.5-km resolution for all of Malawi. The estimates can also be aggregated to any desirable level (city/district/region) for implementing targeted HIV prevention and treatment programs in FSW communities, which have been successful in lowering the incidence of HIV and other sexually transmitted infections. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Facebook
TwitterThis is an extract of Causes of death since 1997 to 2012 for HIV /Aids which includes B20, B21, B22, B23, B24 (according with the ICD-10 code).
Facebook
TwitterThis data set includes tables on persons living with HIV/AIDS, newly diagnosed HIV cases and all cause deaths in HIV/AIDS cases by gender, age, race/ethnicity and transmission category.
In all tables, cases are reported as of December 31 of the given year, as reported by December 31, 2024, to allow a minimum of 12 months reporting delay.
Gender is determined by both current gender and sex at birth variables; transgender values are assigned when current gender is identified as "Transgender" or when a discrepancy is identified between a person's sex at birth and their current gender (e.g., cases where sex at birth is "Male" and current gender is "Female" will become Transgender: Male to Female.) Prior to 2003, Asian and Native Hawaiian/Pacific Islanders were classified as one combined group. In order to present these race/ethnicities separately, living cases recorded under this combined classification were split and redistributed according to their expected proportional population representation estimated from post-2003 data.