86 datasets found
  1. Number of missing persons files in the U.S. 2022, by race

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of missing persons files in the U.S. 2022, by race [Dataset]. https://www.statista.com/statistics/240396/number-of-missing-persons-files-in-the-us-by-race/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.

    What is the NCIC?

    The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.

    Missing people in the United States

    A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.

  2. National Missing and Unidentified Persons System (NamUs)

    • catalog.data.gov
    • datasets.ai
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Justice Programs (2025). National Missing and Unidentified Persons System (NamUs) [Dataset]. https://catalog.data.gov/dataset/national-missing-and-unidentified-persons-system-namus
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Office of Justice Programshttps://ojp.gov/
    Description

    NamUs is the only national repository for missing, unidentified, and unclaimed persons cases. The program provides a singular resource hub for law enforcement, medical examiners, coroners, and investigating professionals. It is the only national database for missing, unidentified, and unclaimed persons that allows limited access to the public, empowering family members to take a more proactive role in the search for their missing loved ones.

  3. Missing and Unaccounted-for People in Mexico (1960s–2025)

    • figshare.com
    txt
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montserrat Mora (2025). Missing and Unaccounted-for People in Mexico (1960s–2025) [Dataset]. http://doi.org/10.6084/m9.figshare.28283000.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset provided by
    figshare
    Authors
    Montserrat Mora
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    This project provides a comprehensive dataset of over 125,000 missing and unaccounted-for people in Mexico from the 1960s to 2025. The dataset is sourced from the publicly available records on the RNPDO website and represents individuals who were actively missing as of the date of collection (May 1, 2025). To protect individual identities, personal identifiers, such as names, have been removed.Dataset Features:The data has been cleaned and translated to facilitate analysis by a global audience.Fields include:SexDate of birthDate of incidenceState and municipality of the incidentData spans over six decades, offering insights into trends and regional disparities.Additional Materials:Python Script: A Python script to generate customizable visualizations based on the dataset. Users can specify the state to generate tailored charts.Sample Chart: An example chart showcasing the evolution of missing persons per 100,000 inhabitants in Mexico between 2006 and 2025.Requirements File: A requirements.txt file listing the necessary Python libraries to run the script seamlessly.This dataset and accompanying tools aim to support researchers, policymakers, and journalists in analyzing and addressing the issue of missing persons in Mexico.

  4. A

    ‘Young People Survey’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2016). ‘Young People Survey’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-young-people-survey-40db/latest
    Explore at:
    Dataset updated
    Aug 27, 2016
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Young People Survey’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/miroslavsabo/young-people-survey on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Introduction

    In 2013, students of the Statistics class at "https://fses.uniba.sk/en/">FSEV UK were asked to invite their friends to participate in this survey.

    • The data file (responses.csv) consists of 1010 rows and 150 columns (139 integer and 11 categorical).
    • For convenience, the original variable names were shortened in the data file. See the columns.csv file if you want to match the data with the original names.
    • The data contain missing values.
    • The survey was presented to participants in both electronic and written form.
    • The original questionnaire was in Slovak language and was later translated into English.
    • All participants were of Slovakian nationality, aged between 15-30.

    The variables can be split into the following groups:

    • Music preferences (19 items)
    • Movie preferences (12 items)
    • Hobbies & interests (32 items)
    • Phobias (10 items)
    • Health habits (3 items)
    • Personality traits, views on life, & opinions (57 items)
    • Spending habits (7 items)
    • Demographics (10 items)

    Research questions

    Many different techniques can be used to answer many questions, e.g.

    • Clustering: Given the music preferences, do people make up any clusters of similar behavior?
    • Hypothesis testing: Do women fear certain phenomena significantly more than men? Do the left handed people have different interests than right handed?
    • Predictive modeling: Can we predict spending habits of a person from his/her interests and movie or music preferences?
    • Dimension reduction: Can we describe a large number of human interests by a smaller number of latent concepts?
    • Correlation analysis: Are there any connections between music and movie preferences?
    • Visualization: How to effectively visualize a lot of variables in order to gain some meaningful insights from the data?
    • (Multivariate) Outlier detection: Small number of participants often cheats and randomly answers the questions. Can you identify them? Hint: [Local outlier factor][1] may help.
    • Missing values analysis: Are there any patterns in missing responses? What is the optimal way of imputing the values in surveys?
    • Recommendations: If some of user's interests are known, can we predict the other? Or, if we know what a person listen, can we predict which kind of movies he/she might like?

    Past research

    • (in slovak) Sleziak, P. - Sabo, M.: Gender differences in the prevalence of specific phobias. Forum Statisticum Slovacum. 2014, Vol. 10, No. 6. [Differences (gender + whether people lived in village/town) in the prevalence of phobias.]

    • Sabo, Miroslav. Multivariate Statistical Methods with Applications. Diss. Slovak University of Technology in Bratislava, 2014. [Clustering of variables (music preferences, movie preferences, phobias) + Clustering of people w.r.t. their interests.]

    Questionnaire

    MUSIC PREFERENCES

    1. I enjoy listening to music.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    2. I prefer.: Slow paced music 1-2-3-4-5 Fast paced music (integer)
    3. Dance, Disco, Funk: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    4. Folk music: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    5. Country: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    6. Classical: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    7. Musicals: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    8. Pop: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    9. Rock: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    10. Metal, Hard rock: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    11. Punk: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    12. Hip hop, Rap: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    13. Reggae, Ska: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    14. Swing, Jazz: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    15. Rock n Roll: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    16. Alternative music: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    17. Latin: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    18. Techno, Trance: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    19. Opera: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)

    MOVIE PREFERENCES

    1. I really enjoy watching movies.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    2. Horror movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    3. Thriller movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    4. Comedies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    5. Romantic movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    6. Sci-fi movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    7. War movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    8. Tales: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    9. Cartoons: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    10. Documentaries: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    11. Western movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)
    12. Action movies: Don't enjoy at all 1-2-3-4-5 Enjoy very much (integer)

    HOBBIES & INTERESTS

    1. History: Not interested 1-2-3-4-5 Very interested (integer)
    2. Psychology: Not interested 1-2-3-4-5 Very interested (integer)
    3. Politics: Not interested 1-2-3-4-5 Very interested (integer)
    4. Mathematics: Not interested 1-2-3-4-5 Very interested (integer)
    5. Physics: Not interested 1-2-3-4-5 Very interested (integer)
    6. Internet: Not interested 1-2-3-4-5 Very interested (integer)
    7. PC Software, Hardware: Not interested 1-2-3-4-5 Very interested (integer)
    8. Economy, Management: Not interested 1-2-3-4-5 Very interested (integer)
    9. Biology: Not interested 1-2-3-4-5 Very interested (integer)
    10. Chemistry: Not interested 1-2-3-4-5 Very interested (integer)
    11. Poetry reading: Not interested 1-2-3-4-5 Very interested (integer)
    12. Geography: Not interested 1-2-3-4-5 Very interested (integer)
    13. Foreign languages: Not interested 1-2-3-4-5 Very interested (integer)
    14. Medicine: Not interested 1-2-3-4-5 Very interested (integer)
    15. Law: Not interested 1-2-3-4-5 Very interested (integer)
    16. Cars: Not interested 1-2-3-4-5 Very interested (integer)
    17. Art: Not interested 1-2-3-4-5 Very interested (integer)
    18. Religion: Not interested 1-2-3-4-5 Very interested (integer)
    19. Outdoor activities: Not interested 1-2-3-4-5 Very interested (integer)
    20. Dancing: Not interested 1-2-3-4-5 Very interested (integer)
    21. Playing musical instruments: Not interested 1-2-3-4-5 Very interested (integer)
    22. Poetry writing: Not interested 1-2-3-4-5 Very interested (integer)
    23. Sport and leisure activities: Not interested 1-2-3-4-5 Very interested (integer)
    24. Sport at competitive level: Not interested 1-2-3-4-5 Very interested (integer)
    25. Gardening: Not interested 1-2-3-4-5 Very interested (integer)
    26. Celebrity lifestyle: Not interested 1-2-3-4-5 Very interested (integer)
    27. Shopping: Not interested 1-2-3-4-5 Very interested (integer)
    28. Science and technology: Not interested 1-2-3-4-5 Very interested (integer)
    29. Theatre: Not interested 1-2-3-4-5 Very interested (integer)
    30. Socializing: Not interested 1-2-3-4-5 Very interested (integer)
    31. Adrenaline sports: Not interested 1-2-3-4-5 Very interested (integer)
    32. Pets: Not interested 1-2-3-4-5 Very interested (integer)

    PHOBIAS

    1. Flying: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    2. Thunder, lightning: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    3. Darkness: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    4. Heights: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    5. Spiders: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    6. Snakes: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    7. Rats, mice: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    8. Ageing: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    9. Dangerous dogs: Not afraid at all 1-2-3-4-5 Very afraid of (integer)
    10. Public speaking: Not afraid at all 1-2-3-4-5 Very afraid of (integer)

    HEALTH HABITS

    1. Smoking habits: Never smoked - Tried smoking - Former smoker - Current smoker (categorical)
    2. Drinking: Never - Social drinker - Drink a lot (categorical)
    3. I live a very healthy lifestyle.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)

    PERSONALITY TRAITS, VIEWS ON LIFE & OPINIONS

    1. I take notice of what goes on around me.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    2. I try to do tasks as soon as possible and not leave them until last minute.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    3. I always make a list so I don't forget anything.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    4. I often study or work even in my spare time.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    5. I look at things from all different angles before I go ahead.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    6. I believe that bad people will suffer one day and good people will be rewarded.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    7. I am reliable at work and always complete all tasks given to me.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    8. I always keep my promises.: Strongly disagree 1-2-3-4-5 Strongly agree (integer)
    9. **I can fall for someone very quickly and then
  5. Z

    Empathy dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathematical Research Data Initiative (2024). Empathy dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7683906
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Mathematical Research Data Initiative
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The database for this study (Briganti et al. 2018; the same for the Braun study analysis) was composed of 1973 French-speaking students in several universities or schools for higher education in the following fields: engineering (31%), medicine (18%), nursing school (16%), economic sciences (15%), physiotherapy, (4%), psychology (11%), law school (4%) and dietetics (1%). The subjects were 17 to 25 years old (M = 19.6 years, SD = 1.6 years), 57% were females and 43% were males. Even though the full dataset was composed of 1973 participants, only 1270 answered the full questionnaire: missing data are handled using pairwise complete observations in estimating a Gaussian Graphical Model, meaning that all available information from every subject are used.

    The feature set is composed of 28 items meant to assess the four following components: fantasy, perspective taking, empathic concern and personal distress. In the questionnaire, the items are mixed; reversed items (items 3, 4, 7, 12, 13, 14, 15, 18, 19) are present. Items are scored from 0 to 4, where “0” means “Doesn’t describe me very well” and “4” means “Describes me very well”; reverse-scoring is calculated afterwards. The questionnaires were anonymized. The reanalysis of the database in this retrospective study was approved by the ethical committee of the Erasmus Hospital.

    Size: A dataset of size 1973*28

    Number of features: 28

    Ground truth: No

    Type of Graph: Mixed graph

    The following gives the description of the variables:

    Feature FeatureLabel Domain Item meaning from Davis 1980

    001 1FS Green I daydream and fantasize, with some regularity, about things that might happen to me.

    002 2EC Purple I often have tender, concerned feelings for people less fortunate than me.

    003 3PT_R Yellow I sometimes find it difficult to see things from the “other guy’s” point of view.

    004 4EC_R Purple Sometimes I don’t feel very sorry for other people when they are having problems.

    005 5FS Green I really get involved with the feelings of the characters in a novel.

    006 6PD Red In emergency situations, I feel apprehensive and ill-at-ease.

    007 7FS_R Green I am usually objective when I watch a movie or play, and I don’t often get completely caught up in it.(Reversed)

    008 8PT Yellow I try to look at everybody’s side of a disagreement before I make a decision.

    009 9EC Purple When I see someone being taken advantage of, I feel kind of protective towards them.

    010 10PD Red I sometimes feel helpless when I am in the middle of a very emotional situation.

    011 11PT Yellow sometimes try to understand my friends better by imagining how things look from their perspective

    012 12FS_R Green Becoming extremely involved in a good book or movie is somewhat rare for me. (Reversed)

    013 13PD_R Red When I see someone get hurt, I tend to remain calm. (Reversed)

    014 14EC_R Purple Other people’s misfortunes do not usually disturb me a great deal. (Reversed)

    015 15PT_R Yellow If I’m sure I’m right about something, I don’t waste much time listening to other people’s arguments. (Reversed)

    016 16FS Green After seeing a play or movie, I have felt as though I were one of the characters.

    017 17PD Red Being in a tense emotional situation scares me.

    018 18EC_R Purple When I see someone being treated unfairly, I sometimes don’t feel very much pity for them. (Reversed)

    019 19PD_R Red I am usually pretty effective in dealing with emergencies. (Reversed)

    020 20FS Green I am often quite touched by things that I see happen.

    021 21PT Yellow I believe that there are two sides to every question and try to look at them both.

    022 22EC Purple I would describe myself as a pretty soft-hearted person.

    023 23FS Green When I watch a good movie, I can very easily put myself in the place of a leading character.

    024 24PD Red I tend to lose control during emergencies.

    025 25PT Yellow When I’m upset at someone, I usually try to “put myself in his shoes” for a while.

    026 26FS Green When I am reading an interesting story or novel, I imagine how I would feel if the events in the story were happening to me.

    027 27PD Red When I see someone who badly needs help in an emergency, I go to pieces.

    028 28PT Yellow Before criticizing somebody, I try to imagine how I would feel if I were in their place

    More information about the dataset is contained in empathy_description.html file.

  6. UCI Communities and Crime Unnormalized Data Set

    • kaggle.com
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kavitha (2018). UCI Communities and Crime Unnormalized Data Set [Dataset]. https://www.kaggle.com/datasets/kkanda/communities%20and%20crime%20unnormalized%20data%20set/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kavitha
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Context

    Introduction: The dataset used for this experiment is real and authentic. The dataset is acquired from UCI machine learning repository website [13]. The title of the dataset is ‘Crime and Communities’. It is prepared using real data from socio-economic data from 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crimedata from the 1995 FBI UCR [13]. This dataset contains a total number of 147 attributes and 2216 instances.

    The per capita crimes variables were calculated using population values included in the 1995 FBI data (which differ from the 1990 Census values).

    Content

    The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. The crime attributes (N=18) that could be predicted are the 8 crimes considered 'Index Crimes' by the FBI)(Murders, Rape, Robbery, .... ), per capita (actually per 100,000 population) versions of each, and Per Capita Violent Crimes and Per Capita Nonviolent Crimes)

    predictive variables : 125 non-predictive variables : 4 potential goal/response variables : 18

    Acknowledgements

    http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized

    U. S. Department of Commerce, Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Computer Files),

    U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File) (1995)

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    Data available in the dataset may not act as a complete source of information for identifying factors that contribute to more violent and non-violent crimes as many relevant factors may still be missing.

    However, I would like to try and answer the following questions answered.

    1. Analyze if number of vacant and occupied houses and the period of time the houses were vacant had contributed to any significant change in violent and non-violent crime rates in communities

    2. How has unemployment changed crime rate(violent and non-violent) in the communities?

    3. Were people from a particular age group more vulnerable to crime?

    4. Does ethnicity play a role in crime rate?

    5. Has education played a role in bringing down the crime rate?

  7. d

    DOHMH COVID-19 Antibody-by-Neighborhood Poverty

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Neighborhood Poverty [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-neighborhood-poverty
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain

  8. d

    NCRB: State and Gender-wise number of children reported missing and traced

    • dataful.in
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). NCRB: State and Gender-wise number of children reported missing and traced [Dataset]. https://dataful.in/datasets/18468
    Explore at:
    csv, application/x-parquet, xlsxAvailable download formats
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    States of India
    Variables measured
    Number of children missing, share of children traced
    Description

    Ministry of Home Affairs, Government of India has defined missing child as 'a person below eighteen years of age, whose whereabouts are not known to the parents, legal guardians and any other persons who may be legally entrusted with the custody of the child, whatever may be the circumstances/causes of disappearance”. The dataset contains the state wise and gender-wise number of children reported missing in a particular year, total number of persons missing including those from previous years, number of persons recovered/traced and those unrecovered/untraced. The dataset also contains the percentage recovery of missing persons which is calculated as the percentage share of total number of persons traced over the total number of persons missing. NCRB started providing detailed data on missing & traced persons including children from 2016 onwards following the Supreme Court’s direction in a Writ Petition. It should also be noted that the data published by NCRB is restricted to those cases where FIRs have been registered by the police in respective States/UTs.

  9. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    sas, spss, avro, parquet, csv, stata, application/jsonl, arrowAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  10. a

    Climate Ready Boston Social Vulnerability

    • bostonopendata-boston.opendata.arcgis.com
    • data.boston.gov
    • +1more
    Updated Sep 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BostonMaps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://bostonopendata-boston.opendata.arcgis.com/datasets/34f2c48b670d4b43a617b1540f20efe3_0
    Explore at:
    Dataset updated
    Sep 21, 2017
    Dataset authored and provided by
    BostonMaps
    Area covered
    Description

    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood

  11. Missing persons cases in Italy 2012-2021

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Missing persons cases in Italy 2012-2021 [Dataset]. https://www.statista.com/statistics/649124/missing-persons-cases-italy/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    As of June 2021, the cumulative number of cases of missing people amounted to 267 thousand. More specifically, the chart displays the total number of reports recorded by the Police between 1974 and June 2021. In 1974, a database recording the number of missing people cases was started.

  12. c

    Cancer (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  13. Quarterly Labour Force Survey Household Dataset, April - June, 2022

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2023). Quarterly Labour Force Survey Household Dataset, April - June, 2022 [Dataset]. http://doi.org/10.5255/ukda-sn-9017-2
    Explore at:
    Dataset updated
    2023
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office For National Statistics
    Description
    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Household datasets
    Up to 2015, the LFS household datasets were produced twice a year (April-June and October-December) from the corresponding quarter's individual-level data. From January 2015 onwards, they are now produced each quarter alongside the main QLFS. The household datasets include all the usual variables found in the individual-level datasets, with the exception of those relating to income, and are intended to facilitate the analysis of the economic activity patterns of whole households. It is recommended that the existing individual-level LFS datasets continue to be used for any analysis at individual level, and that the LFS household datasets be used for analysis involving household or family-level data. From January 2011, a pseudonymised household identifier variable (HSERIALP) is also included in the main quarterly LFS dataset instead.

    Change to coding of missing values for household series
    From 1996-2013, all missing values in the household datasets were set to one '-10' category instead of the separate '-8' and '-9' categories. For that period, the ONS introduced a new imputation process for the LFS household datasets and it was necessary to code the missing values into one new combined category ('-10'), to avoid over-complication. This was also in line with the Annual Population Survey household series of the time. The change was applied to the back series during 2010 to ensure continuity for analytical purposes. From 2013 onwards, the -8 and -9 categories have been reinstated.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each volume alongside the appropriate questionnaire for the year concerned. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS
    LFS User Guidance page before commencing analysis.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly datasets; Secure Access datasets (see below); two-quarter and five-quarter longitudinal datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    End User Licence and Secure Access QLFS Household datasets
    Users should note that there are two discrete versions of the QLFS household datasets. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. Secure Access household datasets for the QLFS are available from 2009 onwards, and include additional, detailed variables not included in the standard EUL versions. Extra variables that typically can be found in the Secure Access versions but not in the EUL versions relate to: geography; date of birth, including day; education and training; household and family characteristics; employment; unemployment and job hunting; accidents at work and work-related health problems; nationality, national identity and country of birth; occurrence of learning difficulty or disability; and benefits. For full details of variables included, see data dictionary documentation. The Secure Access version (see SN 7674) has more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Changes to variables in QLFS Household EUL datasets
    In order to further protect respondent confidentiality, ONS have made some changes to variables available in the EUL datasets. From July-September 2015 onwards, 4-digit industry class is available for main job only, meaning that 3-digit industry group is the most detailed level available for second and last job.

    Review of imputation methods for LFS Household data - changes to missing values
    A review of the imputation methods used in LFS Household and Family analysis resulted in a change from the January-March 2015 quarter onwards. It was no longer considered appropriate to impute any personal characteristic variables (e.g. religion, ethnicity, country of birth, nationality, national identity, etc.) using the LFS donor imputation method. This method is primarily focused to ensure the 'economic status' of all individuals within a household is known, allowing analysis of the combined economic status of households. This means that from 2015 larger amounts of missing values ('-8'/-9') will be present in the data for these personal characteristic variables than before. Therefore if users need to carry out any time series analysis of households/families which also includes personal characteristic variables covering this time period, then it is advised to filter off 'ioutcome=3' cases from all periods to remove this inconsistent treatment of non-responders.

    Occupation data for 2021 and 2022 data files

    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

    Latest edition information

    For the second edition (September 2023), the variables NSECM20, NSECMJ20, SC2010M, SC20SMJ, SC20SMN, SOC20M and SOC20O have been replaced with new versions. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

  14. Missing persons cases in Italy 2012-H1 2021, by result

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Missing persons cases in Italy 2012-H1 2021, by result [Dataset]. https://www.statista.com/statistics/649158/missing-persons-cases-italy-by-result/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    As of June 2021, 63.6 thousand individuals were still not found in Italy. More specifically, the chart displays the total number of reports recorded by the Police between 1974 and June 30, 2021. In 1974, a database recording the number of missing people cases was started.

    In total, as of June 2021, the number of cases of missing people amounted to 266,671.

  15. Table S1 - Alzheimer’s Disease: Analyzing the Missing Heritability

    • figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Perry G. Ridge; Shubhabrata Mukherjee; Paul K. Crane; John S. K. Kauwe (2023). Table S1 - Alzheimer’s Disease: Analyzing the Missing Heritability [Dataset]. http://doi.org/10.1371/journal.pone.0079771.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Perry G. Ridge; Shubhabrata Mukherjee; Paul K. Crane; John S. K. Kauwe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Missingness rates for covariates and case-control status. The Alzheimer’s Disease Genetics Consortium dataset consists of 19,692 total individuals. We removed any individuals missing any of the covariates (listed here) or case-control status (included in this table). (DOCX)

  16. Los Angeles Crime Data 2020-2023

    • kaggle.com
    Updated Jul 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Venkatasai Rao Dheekonda (2023). Los Angeles Crime Data 2020-2023 [Dataset]. https://www.kaggle.com/venkatsairo4899/los-angeles-crime-data-2020-2023/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Venkatasai Rao Dheekonda
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Area covered
    Los Angeles
    Description

    This dataset represents a comprehensive record of crime incidents within the City of Los Angeles, starting from 2020. The data is sourced from original crime reports, which were originally typed on paper, introducing the possibility of some inaccuracies. Certain location fields may contain missing data denoted as (0°, 0°). To prioritize privacy, address fields are limited to the nearest hundred block. While the data is generally reliable, any questions or concerns can be addressed through comments. Explore this dataset to uncover trends, patterns, and gain a deeper understanding of crime in Los Angeles.

  17. S

    Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on...

    • scidb.cn
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Luo (2025). Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on Trust: Evidence from Six Experimental Studies [Dataset]. http://doi.org/10.57760/sciencedb.psych.00565
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Yang Luo
    Description

    This dataset originates from a series of experimental studies titled “Tough on People, Tolerant to AI? Differential Effects of Human vs. AI Unfairness on Trust” The project investigates how individuals respond to unfair behavior (distributive, procedural, and interactional unfairness) enacted by artificial intelligence versus human agents, and how such behavior affects cognitive and affective trust.1 Experiment 1a: The Impact of AI vs. Human Distributive Unfairness on TrustOverview: This dataset comes from an experimental study aimed at examining how individuals respond in terms of cognitive and affective trust when distributive unfairness is enacted by either an artificial intelligence (AI) agent or a human decision-maker. Experiment 1a specifically focuses on the main effect of the “type of decision-maker” on trust.Data Generation and Processing: The data were collected through Credamo, an online survey platform. Initially, 98 responses were gathered from students at a university in China. Additional student participants were recruited via Credamo to supplement the sample. Attention check items were embedded in the questionnaire, and participants who failed were automatically excluded in real-time. Data collection continued until 202 valid responses were obtained. SPSS software was used for data cleaning and analysis.Data Structure and Format: The data file is named “Experiment1a.sav” and is in SPSS format. It contains 28 columns and 202 rows, where each row corresponds to one participant. Columns represent measured variables, including: grouping and randomization variables, one manipulation check item, four items measuring distributive fairness perception, six items on cognitive trust, five items on affective trust, three items for honesty checks, and four demographic variables (gender, age, education, and grade level). The final three columns contain computed means for distributive fairness, cognitive trust, and affective trust.Additional Information: No missing data are present. All variable names are labeled in English abbreviations to facilitate further analysis. The dataset can be directly opened in SPSS or exported to other formats.2 Experiment 1b: The Mediating Role of Perceived Ability and Benevolence (Distributive Unfairness)Overview: This dataset originates from an experimental study designed to replicate the findings of Experiment 1a and further examine the potential mediating role of perceived ability and perceived benevolence.Data Generation and Processing: Participants were recruited via the Credamo online platform. Attention check items were embedded in the survey to ensure data quality. Data were collected using a rolling recruitment method, with invalid responses removed in real time. A total of 228 valid responses were obtained.Data Structure and Format: The dataset is stored in a file named Experiment1b.sav in SPSS format and can be directly opened in SPSS software. It consists of 228 rows and 40 columns. Each row represents one participant’s data record, and each column corresponds to a different measured variable. Specifically, the dataset includes: random assignment and grouping variables; one manipulation check item; four items measuring perceived distributive fairness; six items on perceived ability; five items on perceived benevolence; six items on cognitive trust; five items on affective trust; three items for attention check; and three demographic variables (gender, age, and education). The last five columns contain the computed mean scores for perceived distributive fairness, ability, benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be analyzed directly in SPSS or exported to other formats as needed.3 Experiment 2a: Differential Effects of AI vs. Human Procedural Unfairness on TrustOverview: This dataset originates from an experimental study aimed at examining whether individuals respond differently in terms of cognitive and affective trust when procedural unfairness is enacted by artificial intelligence versus human decision-makers. Experiment 2a focuses on the main effect of the decision agent on trust outcomes.Data Generation and Processing: Participants were recruited via the Credamo online survey platform from two universities located in different regions of China. A total of 227 responses were collected. After excluding those who failed the attention check items, 204 valid responses were retained for analysis. Data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2a.sav in SPSS format and can be directly opened in SPSS software. It contains 204 rows and 30 columns. Each row represents one participant’s response record, while each column corresponds to a specific variable. Variables include: random assignment and grouping; one manipulation check item; seven items measuring perceived procedural fairness; six items on cognitive trust; five items on affective trust; three attention check items; and three demographic variables (gender, age, and education). The final three columns contain computed average scores for procedural fairness, cognitive trust, and affective trust.Additional Notes: The dataset contains no missing values. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be directly analyzed in SPSS or exported to other formats as needed.4 Experiment 2b: Mediating Role of Perceived Ability and Benevolence (Procedural Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 2a and to further examine the potential mediating roles of perceived ability and perceived benevolence in shaping trust responses under procedural unfairness.Data Generation and Processing: Participants were working adults recruited through the Credamo online platform. A rolling data collection strategy was used, where responses failing attention checks were excluded in real time. The final dataset includes 235 valid responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2b.sav, which is in SPSS format and can be directly opened using SPSS software. It contains 235 rows and 43 columns. Each row corresponds to a single participant, and each column represents a specific measured variable. These include: random assignment and group labels; one manipulation check item; seven items measuring procedural fairness; six items for perceived ability; five items for perceived benevolence; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final five columns contain the computed average scores for procedural fairness, perceived ability, perceived benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to support future reuse and secondary analysis. The dataset can be directly analyzed in SPSS and easily converted into other formats if needed.5 Experiment 3a: Effects of AI vs. Human Interactional Unfairness on TrustOverview: This dataset comes from an experimental study that investigates how interactional unfairness, when enacted by either artificial intelligence or human decision-makers, influences individuals’ cognitive and affective trust. Experiment 3a focuses on the main effect of the “decision-maker type” under interactional unfairness conditions.Data Generation and Processing: Participants were college students recruited from two universities in different regions of China through the Credamo survey platform. After excluding responses that failed attention checks, a total of 203 valid cases were retained from an initial pool of 223 responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3a.sav, in SPSS format and compatible with SPSS software. It contains 203 rows and 27 columns. Each row represents a single participant, while each column corresponds to a specific measured variable. These include: random assignment and condition labels; one manipulation check item; four items measuring interactional fairness perception; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final three columns contain computed average scores for interactional fairness, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variable names are provided using standardized English abbreviations to facilitate secondary analysis. The data can be directly analyzed using SPSS and exported to other formats as needed.6 Experiment 3b: The Mediating Role of Perceived Ability and Benevolence (Interactional Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 3a and further examine the potential mediating roles of perceived ability and perceived benevolence under conditions of interactional unfairness.Data Generation and Processing: Participants were working adults recruited via the Credamo platform. Attention check questions were embedded in the survey, and responses that failed these checks were excluded in real time. Data collection proceeded in a rolling manner until a total of 227 valid responses were obtained. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3b.sav, in SPSS format and compatible with SPSS software. It includes 227 rows and

  18. A

    ‘Goodreads-books’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Goodreads-books’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-goodreads-books-a906/latest
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Goodreads-books’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jealousleopard/goodreadsbooks on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    The primary reason for creating this dataset is the requirement of a good clean dataset of books. Being a bookie myself (see what I did there?) I had searched for datasets on books in kaggle itself - and I found out that while most of the datasets had a good amount of books listed, there were either a) major columns missing or b) grossly unclean data. I mean, you can't determine how good a book is just from a few text reviews, come on! What I needed were numbers, solid integers and floats that say how many people liked the book or hated it, how much did they like it, and stuff like that. Even the good dataset that I found was well-cleaned, it had a number of interlinked files, which increased the hassle. This prompted me to use the Goodreads API to get a well-cleaned dataset, with the promising features only ( minus the redundant ones ), and the result is the dataset you're at now.

    Acknowledgements

    This data was entirely scraped via the Goodreads API, so kudos to them for providing such a simple interface to scrape their database.

    Inspiration

    The reason behind creating this dataset is pretty straightforward, I'm listing the books for all book-lovers out there, irrespective of the language and publication and all of that. So go ahead and use it to your liking, find out what book you should be reading next ( there are very few free content recommendation systems that suggest books last I checked ), what are the details of every book you have read, create a word cloud from the books you want to read - all possible approaches to exploring this dataset are welcome. I started creating this dataset on May 25, 2019, and intend to update it frequently. P.S. If you like this, please don't forget to give an upvote!

    V2 notes :

    You have the information about the publisher and the publication date now! Also, multiple authors are now delimited by '/'. Enjoy!

    --- Original source retains full ownership of the source dataset ---

  19. c

    Quarterly Labour Force Survey, Household Dataset, April - June, 2024

    • datacatalogue.cessda.eu
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Quarterly Labour Force Survey, Household Dataset, April - June, 2024 [Dataset]. http://doi.org/10.5255/UKDA-SN-9303-1
    Explore at:
    Dataset updated
    Feb 28, 2025
    Authors
    Office for National Statistics
    Time period covered
    Apr 1, 2024 - Jun 30, 2024
    Area covered
    United Kingdom
    Variables measured
    Families/households, National
    Measurement technique
    Compilation/Synthesis
    Description

    Abstract copyright UK Data Service and data collection copyright owner.

    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Household datasets
    Up to 2015, the LFS household datasets were produced twice a year (April-June and October-December) from the corresponding quarter's individual-level data. From January 2015 onwards, they are now produced each quarter alongside the main QLFS. The household datasets include all the usual variables found in the individual-level datasets, with the exception of those relating to income, and are intended to facilitate the analysis of the economic activity patterns of whole households. It is recommended that the existing individual-level LFS datasets continue to be used for any analysis at individual level, and that the LFS household datasets be used for analysis involving household or family-level data. From January 2011, a pseudonymised household identifier variable (HSERIALP) is also included in the main quarterly LFS dataset instead.

    Change to coding of missing values for household series
    From 1996-2013, all missing values in the household datasets were set to one '-10' category instead of the separate '-8' and '-9' categories. For that period, the ONS introduced a new imputation process for the LFS household datasets and it was necessary to code the missing values into one new combined category ('-10'), to avoid over-complication. This was also in line with the Annual Population Survey household series of the time. The change was applied to the back series during 2010 to ensure continuity for analytical purposes. From 2013 onwards, the -8 and -9 categories have been reinstated.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each volume alongside the appropriate questionnaire for the year concerned. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS LFS User Guidance page before commencing analysis.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly datasets; Secure Access datasets (see below); two-quarter and five-quarter longitudinal datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    End User Licence and Secure Access QLFS Household datasets
    Users should note that there are two discrete versions of the QLFS household datasets. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. Secure Access household datasets for the QLFS are available from 2009 onwards, and include additional, detailed variables not included in the standard EUL versions. Extra variables that typically can be found in the Secure Access versions but not in the EUL versions relate to: geography; date of birth, including day; education and training; household and family characteristics; employment; unemployment and job hunting; accidents at work and work-related health problems; nationality, national identity and country of birth; occurrence of learning difficulty or disability; and benefits. For full details of variables included, see data dictionary documentation. The Secure Access version (see SN 7674) has more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of...

  20. S

    Data from: A dataset of Ya'an Earthquake based on social media

    • scidb.cn
    Updated Feb 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    田传召; 李国庆; 杨腾飞; 李振宇 (2018). A dataset of Ya'an Earthquake based on social media [Dataset]. http://doi.org/10.11922/sciencedb.560
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 1, 2018
    Dataset provided by
    Science Data Bank
    Authors
    田传召; 李国庆; 杨腾飞; 李振宇
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Yaan
    Description

    The Ya'an Earthquake occurred on April 20, 2013 in Beijing time. It was located in Lushan County, Ya'an City, Sichuan Province, and the magnitude of this earthquake was 7.0. As of 14:30 on the 24th, the earthquake caused a total of 196 people dead, 21 missing and 11470 injured. With the development of information and communication technology,based on previous research, we find that micro-blog system had shown great potential in promoting emergency response because they provided an easily accessible information platform on which disaster information could be rapidly organized and shared to a large number of people. Based on this, taking the Ya'an Earthquake as an example, this dataset was collected the Sina-Weibo data of Sichuan Province after 7 days of the Ya'an Earthquake. Sina-Weibo, a platform for information sharing and exchanging for entertainment and leisure life services for the general public, was launched in August 2009. Sina-Weibo can be used by users to search, inquire and publish post-earthquake-related blog. The public can communicate on Sina-Weibo, express their feelings, and can also provide some better suggestions and other functions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Number of missing persons files in the U.S. 2022, by race [Dataset]. https://www.statista.com/statistics/240396/number-of-missing-persons-files-in-the-us-by-race/
Organization logo

Number of missing persons files in the U.S. 2022, by race

Explore at:
Dataset updated
Jul 5, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
United States
Description

In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.

What is the NCIC?

The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.

Missing people in the United States

A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.

Search
Clear search
Close search
Google apps
Main menu