The data (name, year of birth, sex, and number) are from a 100 percent sample of Social Security card applications for 1880 onward.
Fun Club Name Generator Dataset
This is a small, handcrafted dataset of random and fun club name ideas.The goal is to help people who are stuck naming something — whether it's a book club, a gaming group, a project, or just a Discord server between friends.
Why this?
A few friends and I spent hours trying to name a casual group — everything felt cringey, too serious, or already taken. We started writing down names that made us laugh, and eventually collected enough to… See the full description on the dataset page: https://huggingface.co/datasets/Laurenfromhere/fun-club-name-generator-dataset.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
171 million names (100 million unique) This torrent contains: The URL of every searchable Facebook user s profile The name of every searchable Facebook user, both unique and by count (perfect for post-processing, datamining, etc) Processed lists, including first names with count, last names with count, potential usernames with count, etc The programs I used to generate everything So, there you have it: lots of awesome data from Facebook. Now, I just have to find one more problem with Facebook so I can write "Revenge of the Facebook Snatchers" and complete the trilogy. Any suggestions? >:-) Limitations So far, I have only indexed the searchable users, not their friends. Getting their friends will be significantly more data to process, and I don t have those capabilities right now. I d like to tackle that in the future, though, so if anybody has any bandwidth they d like to donate, all I need is an ssh account and Nmap installed. An additional limitation is that these are on
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
List of male and female baby names in South Australia from 1944 to 2024. The annual data for baby names is published January/February each year. List of male and female baby names in South Australia from 1944 to 2024. The annual data for baby names is published January/February each year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This collection contains a the datasets created as part of a masters thesis. The collection consists of two datasets in two forms as well as the corresponding entity descriptions for each of the datasets.The experiment_doc_labels_clean documents contain the data used for the experiments. The JSON file consists of a list of JSON objects. The JSON objects contain the following fields: id: Document idner_tags: List of IOB tags indicating mention boundaries based on the majority label assigned using crowdsourcing.el_tags: List of entity ids based on the majority label assigned using crowdsourcing.all_ner_tags: List of lists of IOB tags assigned by each of the users.all_el_tags: List of lists of entity IDs assigned by each of the users annotating the data.tokens: List of tokens from the text.The experiment_doc_labels_clean-U.tsv contains the dataset used for the experiments but in in a format similar to the CoNLL-U format. The first line for each document contains the document ID. The documents are separated by a blank line. Each word in a document is on its own line consisting of the word the IOB tag and the entity id separated by tags.While the experiments were being completed the annotation system was left open until all the documents had been annotated by three users. This resulted in the all_docs_complete_labels_clean.json and all_docs_complete_labels_clean-U.tsv datasets. The all_docs_complete_labels_clean.json and all_docs_complete_labels_clean-U.tsv documents take the same form as the experiment_doc_labels_clean.json and experiment_doc_labels_clean-U.tsv.Each of the documents described above contain an entity id. The IDs match to the entities stored in the entity_descriptions CSV files. Each of row in these files corresponds to a mention for an entity and take the form:{ID}${Mention}${Context}[N]Three sets of entity descriptions are available:1. entity_descriptions_experiments.csv: This file contains all the mentions from the subset of the data used for the experiments as described above. However, the data has not been cleaned so there are multiple entity IDs which actually refer to the same entity.2. entity_descriptions_experiments_clean.csv: These entities also cover the data used for the experiments, however, duplicate entities have been merged. These entities correspond to the labels for the documents in the experiment_doc_labels_clean files.3. entity_descriptions_all.csv: The entities in this file correspond to the data in the all_docs_complete_labels_clean. Please note that the entities have not been cleaned so there may be duplicate or incorrect entities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Indian Names Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/ananysharma/indian-names-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset is useful to me in terms of my project which i was working. Problem was to extract names from unstructured text and i am still working on it.I felt of sharing this as some of the people might find useful in some Named Entity Recognition and other nlp tasks. If you want you can work on how to extract names from unstructured text without any context.For eg if we have to extract names from a document where context is not present.You can share your work and we can work together for better.
The dataset contains a male and female dataset along with a python preprocessing file for merging the two datasets.You can use either of the datset. Or you can see how we can merge both.
I get to know this dataset from a github repository which can be visited here
--- Original source retains full ownership of the source dataset ---
https://www.ontario.ca/page/copyright-informationhttps://www.ontario.ca/page/copyright-information
This dataset contains a listing of individuals who have had their name formally changed in Ontario.
This data is made publicly available through the Ontario Gazette.
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Distribution of first and last name frequencies of academic authors by country.
Spreadsheet 1 contains 50 countries, with names based on affiliations in Scopus journal articles 2001-2021.
Spreadsheet 2 contains 200 countries, with names based on affiliations in Scopus journal articles 2001-2021, using a marginally updated last name extraction algorithm that is almost the same except for Dutch/Flemish names.
From the paper: Can national researcher mobility be tracked by first or last name uniqueness?
For example the distribution for the UK shows a single peak for international names, with no national names, Belgium has a national peak and an international peak, and China has mainly a national peak. The 50 countries are:
No Code Country 1 SB Serbia 2 IE Ireland 3 HU Hungary 4 CL Chile 5 CO Columbia 6 NG Nigeria 7 HK Hong Kong 8 AR Argentina 9 SG Singapore 10 NZ New Zealand 11 PK Pakistan 12 TH Thailand 13 UA Ukraine 14 SA Saudi Arabia 15 RO Israel 16 ID Indonesia 17 IL Israel 18 MY Malaysia 19 DK Denmark 20 CZ Czech Republic 21 ZA South Africa 22 AT Austria 23 FI Finland 24 PT Portugal 25 GR Greece 26 NO Norway 27 EG Egypt 28 MX Mexico 29 BE Belgium 30 CH Switzerland 31 SW Sweden 32 PL Poland 33 TW Taiwan 34 NL Netherlands 35 TK Turkey 36 IR Iran 37 RU Russia 38 AU Australia 39 BR Brazil 40 KR South Korea 41 ES Spain 42 CA Canada 43 IT France 44 FR France 45 IN India 46 DE Germany 47 US USA 48 UK UK 49 JP Japan 50 CN China
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NLUCat is a dataset of NLU in Catalan. It consists of nearly 12,000 instructions annotated with the most relevant intents and spans. Each instruction is accompanied, in addition, by the instructions received by the annotator who wrote it.
The intents taken into account are the habitual ones of a virtual home assistant (activity calendar, IOT, list management, leisure, etc.), but specific ones have also been added to take into account social and healthcare needs for vulnerable people (information on administrative procedures, menu and medication reminders, etc.).
The spans have been annotated with a tag describing the type of information they contain. They are fine-grained, but can be easily grouped to use them in robust systems.
The examples are not only written in Catalan, but they also take into account the geographical and cultural reality of the speakers of this language (geographic points, cultural references, etc.)
This dataset can be used to train models for intent classification, spans identification and examples generation.
This is the complete version of the dataset. A version prepared to train and evaluate intent classifiers has been published in HuggingFace.
In this repository you'll find the following items:
This dataset can be used for any purpose, whether academic or commercial, under the terms of the CC BY 4.0. Give appropriate credit , provide a link to the license, and indicate if changes were made.
Intent classification, spans identification and examples generation.
The dataset is in Catalan (ca-ES).
Three JSON files, one for each split.
Example
An example looks as follows:
{
"example": "Demana una ambulància; la meva dona està de part.",
"annotation": {
"intent": "call_emergency",
"slots": [
{
"Tag": "service",
"Text": "ambulància",
"Start_char": 11,
"End_char": 21
},
{
"Tag": "situation",
"Text": "la meva dona està de part",
"Start_char": 23,
"End_char": 48
}
]
}
},
We created this dataset to contribute to the development of language models in Catalan, a low-resource language.
When creating this dataset, we took into account not only the language but the entire socio-cultural reality of the Catalan-speaking population. Special consideration was also given to the needs of the vulnerable population.
Initial Data Collection and Normalization
We commissioned a company to create fictitious examples for the creation of this dataset.
Who are the source language producers?
We commissioned the writing of the examples to the company m47 labs.
Annotation process
The elaboration of this dataset has been done in three steps, taking as a model the process followed by the NLU-Evaluation-Data dataset, as explained in the paper.
* First step: translation or elaboration of the instructions given to the annotators to write the examples.
* Second step: writing the examples. This step also includes the grammatical correction and normalization of the texts.
* Third step: recording the attempts and the slots of each example. In this step, some modifications were made to the annotation guides to adjust them to the real situations.
Who are the annotators?
The drafting of the examples and their annotation was entrusted to the company m47 labs through a public tender process.
No personal or sensitive information included.
The examples used for the preparation of this dataset are fictitious and, therefore, the information shown is not real.
We hope that this dataset will help the development of virtual assistants in Catalan, a language that is often not taken into account, and that it will especially help to improve the quality of life of people with special needs.
When writing the examples, the annotators were asked to take into account the socio-cultural reality (geographic points, artists and cultural references, etc.) of the Catalan-speaking population.
Likewise, they were asked to be careful to avoid examples that reinforce the stereotypes that exist in this society. For example: be careful with the gender or origin of personal names that are associated with certain activities.
[N/A]
Language Technologies Unit at the Barcelona Supercomputing Center (langtech@bsc.es)
This work has been promoted and financed by the Generalitat de Catalunya through the Aina project.
This dataset can be used for any purpose, whether academic or commercial, under the terms of the CC BY 4.0.
Give appropriate credit, provide a link to the license, and indicate if changes were made.
The drafting of the examples and their annotation was entrusted to the company m47 labs through a public tender process.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Azerbaijani Named Entity Recognition (NER) Dataset
This repository contains the dataset for training and evaluating Named Entity Recognition (NER) models in the Azerbaijani language. The dataset includes annotated text data with various named entities.
Dataset Description
The dataset includes the following entity types:
0: O: Outside any named entity 1: PERSON: Names of individuals 2: LOCATION: Geographical locations, both man-made and natural 3: ORGANISATION: Names of… See the full description on the dataset page: https://huggingface.co/datasets/LocalDoc/azerbaijani-ner-dataset.
This dataset represents the popular last names in the United States for White.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.
However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.
2 Data-set Introduction
2.1 Data Collection
We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:
The headline must have one or more words directly or indirectly related to COVID-19.
The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
Avoid taking duplicate reports.
Maintain a time frame for the above mentioned newspapers.
To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.
2.2 Data Pre-processing and Statistics
Some pre-processing steps performed on the newspaper report dataset are as follows:
Remove hyperlinks.
Remove non-English alphanumeric characters.
Remove stop words.
Lemmatize text.
While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.
The primary data statistics of the two dataset are shown in Table 1 and 2.
Table 1: Covid-News-USA-NNK data statistics
No of words per headline
7 to 20
No of words per body content
150 to 2100
Table 2: Covid-News-BD-NNK data statistics No of words per headline
10 to 20
No of words per body content
100 to 1500
2.3 Dataset Repository
We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.
3 Literature Review
Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.
Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].
Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.
Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.
4 Our experiments and Result analysis
We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:
In February, both the news paper have talked about China and source of the outbreak.
StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
Washington Post discussed global issues more than StarTribune.
StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.
We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases
where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
Motivation: creating challenging dataset for testing Named-Entity
Linking. The Namesakes dataset consists of three closely related datasets: Entities, News and Backlinks. Entities were collected as Wikipedia text chunks corresponding to highly ambiguous entity names. The News were collected as random news text chunks, containing mentions that either belong to the Entities dataset or can be easily confused with them. Backlinks were obtained from Wikipedia dump data with intention to have mentions linked to the entities of the Entity dataset. The Entities and News are human-labeled, resolving the mentions of the entities.Methods
Entities were collected as Wikipedia
text chunks corresponding to highly ambiguous entity names: the most popular people names, the most popular locations, and organizations with name ambiguity. In each Entities text chunk, the named entities with the name similar to the chunk Wikipedia page name are labeled. For labeling, these entities were suggested to human annotators (odetta.ai) to tag as "Same" (same as the page entity) or "Other". The labeling was done by 6 experienced annotators that passed through a preliminary trial task. The only accepted tags are the tags assigned in agreement by not less than 5 annotators, and then passed through reconciliation with an experienced reconciliator.
The News were collected as random news text chunks, containing mentions which either belong to the Entities dataset or can be easily confused with them. In each News text chunk one mention was selected for labeling, and 3-10 Wikipedia pages from Entities were suggested as the labels for an annotator to choose from. The labeling was done by 3 experienced annotators (odetta.ai), after the annotators passed a preliminary trial task. The results were reconciled by an experienced reconciliator. All the labeling was done using Lighttag (lighttag.io).
Backlinks were obtained from Wikipedia dump data (dumps.wikimedia.org/enwiki/20210701) with intention to have mentions linked to the entities of the Entity dataset. The backlinks were filtered to leave only mentions in a good quality text; each text was cut 1000 characters after the last mention.
Usage NotesEntities:
File: Namesakes_entities.jsonl The Entities dataset consists of 4148 Wikipedia text chunks containing human-tagged mentions of entities. Each mention is tagged either as "Same" (meaning that the mention is of this Wikipedia page entity), or "Other" (meaning that the mention is of some other entity, just having the same or similar name). The Entities dataset is a jsonl list, each item is a dictionary with the following keys and values: Key: ‘pagename’: page name of the Wikipedia page. Key ‘pageid’: page id of the Wikipedia page. Key ‘title’: title of the Wikipedia page. Key ‘url’: URL of the Wikipedia page. Key ‘text’: The text chunk from the Wikipedia page. Key ‘entities’: list of the mentions in the page text, each entity is represented by a dictionary with the keys: Key 'text': the mention as a string from the page text. Key ‘start’: start character position of the entity in the text. Key ‘end’: end (one-past-last) character position of the entity in the text. Key ‘tag’: annotation tag given as a string - either ‘Same’ or ‘Other’.
News: File: Namesakes_news.jsonl The News dataset consists of 1000 news text chunks, each one with a single annotated entity mention. The annotation either points to the corresponding entity from the Entities dataset (if the mention is of that entity), or indicates that the mentioned entity does not belong to the Entities dataset. The News dataset is a jsonl list, each item is a dictionary with the following keys and values: Key ‘id_text’: Id of the sample. Key ‘text’: The text chunk. Key ‘urls’: List of URLs of wikipedia entities suggested to labelers for identification of the entity mentioned in the text. Key ‘entity’: a dictionary describing the annotated entity mention in the text: Key 'text': the mention as a string found by an NER model in the text. Key ‘start’: start character position of the mention in the text. Key ‘end’: end (one-past-last) character position of the mention in the text. Key 'tag': This key exists only if the mentioned entity is annotated as belonging to the Entities dataset - if so, the value is a dictionary identifying the Wikipedia page assigned by annotators to the mentioned entity: Key ‘pageid’: Wikipedia page id. Key ‘pagetitle’: page title. Key 'url': page URL.
Backlinks dataset: The Backlinks dataset consists of two parts: dictionary Entity-to-Backlinks and Backlinks documents. The dictionary points to backlinks for each entity of the Entity dataset (if any backlinks exist for the entity). The Backlinks documents are the backlinks Wikipedia text chunks with identified mentions of the entities from the Entities dataset.
Each mention is identified by surrounded double square brackets, e.g. "Muir built a small cabin along [[Yosemite Creek]].". However, if the mention differs from the exact entity name, the double square brackets wrap both the exact name and, separated by '|', the mention string to the right, for example: "Muir also spent time with photographer [[Carleton E. Watkins | Carleton Watkins]] and studied his photographs of Yosemite.".
The Entity-to-Backlinks is a jsonl with 1527 items. File: Namesakes_backlinks_entities.jsonl Each item is a tuple: Entity name. Entity Wikipedia page id. Backlinks ids: a list of pageids of backlink documents.
The Backlinks documents is a jsonl with 26903 items. File: Namesakes_backlinks_texts.jsonl Each item is a dictionary: Key ‘pageid’: Id of the Wikipedia page. Key ‘title’: Title of the Wikipedia page. Key 'content': Text chunk from the Wikipedia page, with all mentions in the double brackets; the text is cut 1000 characters after the last mention, the cut is denoted as '...[CUT]'. Key 'mentions': List of the mentions from the text, for convenience. Each mention is a tuple: Entity name. Entity Wikipedia page id. Sorted list of all character indexes at which the mention occurrences start in the text.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides complementary material to the previously published dataset named “A dataset of EEG recordings from: Alzheimer's disease, Frontotemporal dementia and Healthy subjects” with doi:10.18112/openneuro.ds004504.v1.0.8. It is consisted of eyes-open EEG recordings in multiple photic stimulation settings, according to the clinical protocol of the 2nd department of Neurology, AHEPA University of Thessaloniki, Greece. The participant numbers match the respective participant numbers of the aforementioned dataset. In the clinical protocol, the 1st datasets recordings came first, followed by the recordings of this dataset. The dataset is designed to complement a previously published dataset in which the same cohort underwent EEG recordings with their eyes closed. During the recordings, participants were seated with their eyes open while being exposed to photic stimulation. The stimulation was administered at incremental frequencies, beginning at 5 Hz, progressing to 10 Hz, 15 Hz, and in some cases, extending up to 30 Hz, with increments of 5 Hz at each level. This study compared cognitive function in 36 individuals with Alzheimer's disease (AD), 23 with Frontotemporal Dementia (FTD), and 29 healthy controls (CN). Cognitive function was measured using the Mini-Mental State Examination (MMSE), where lower scores indicate greater cognitive impairment. The AD group had an average MMSE score of 17.75 (standard deviation of 4.5), the FTD group averaged 22.17 (standard deviation of 8.22), and the CN group scored 30. The average age was 66.4 (standard deviation of 7.9) for the AD group, 63.6 (standard deviation of 8.2) for the FTD group, and 67.9 (standard deviation of 5.4) for the CN group. The median disease duration was 25 months, with an interquartile range of 24 to 28.5 months. Notably, the AD group had no reported dementia-related comorbidities. Recordings: Recordings were aquired from the 2nd Department of Neurology of AHEPA General Hospital of Thessaloniki by an experienced team of neurologists. For recording, a Nihon Kohden EEG 2100 clinical device was used, with 19 scalp electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) according to the 10-20 international system and 2 additional ectrodes (A1 and A2) placed on the mastoids for impendance check, according to the manual of the device. Each recording was performed according to the clinical protocol with participants being in a sitting position having their eyes closed. Before the initialization of each recording, the skin impedance value was ensured to be below 5k?. The sampling rate was 500 Hz with 10uV/mm resolution. The recording montages were anterior-posterior bipolar and referential montage using Cz as the common reference. The referential montage was included in this dataset. The recordings were received under the range of the following parameters of the amplifier: Sensitivity: 10uV/mm, time constant: 0.3s, and high frequency filter at 70 Hz. Each recording lasted approximately 4.86 minutes for AD group (min=1.30 minutes , max= 8.77 minutes), 4.42 minutes for FTD group (min=1.25 minutes, max=10.05 minutes) and 6.43 minutes for CN group (min=3.17 minutes, max= 9.17 minutes). In total, 174.94 minutes of AD, 101.56 minutes of FTD and 186.50 minutes of CN recordings were collected and are included in the dataset. Preprocessing: The EEG recordings were exported in .eeg format and are transformed to BIDS accepted .set format for the inclusion in the dataset. Automatic annotations of the Nihon Kohden EEG device marking artifacts (muscle activity, blinking, swallowing) have not been included for language compatibility purposes (If this is an issue, please use the preprocessed dataset in Folder: derivatives). The unprocessed EEG recordings are included in folders named: sub-0XX. Folders named sub-0XX in the subfolder derivatives contain the preprocessed and denoised EEG recordings. The preprocessing pipeline of the EEG signals is as follows. First, a Butterworth band-pass filter 0.5-45 Hz was applied and the signals were re-referenced to A1-A2. Then, the Artifact Subspace Reconstruction routine (ASR) which is an EEG artifact correction method included in the EEGLab Matlab software was applied to the signals, removing bad data periods which exceeded the max acceptable 0.5 second window standard deviation of 15, which is considered a conservative window. Next, the Independent Component Analysis (ICA) method (RunICA algorithm) was performed, transforming the 19 EEG signals to 19 ICA components. ICA components that were classified as “eye artifacts” or “jaw artifacts” by the automatic classification routine “ICLabel” in the EEGLAB platform were automatically rejected. It should be noted that, even though the recording was performed in a resting state, eyes-closed condition, eye artifacts of eye movement were still found at some EEG recordings.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for places and equivalent entities in United States of America.This layer both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.
1,000 People - Spanish Handwriting OCR Data. The writers are Europeans who often write spanish. The device is scanner, the collection angle is eye-level angle. The dataset content includes address, company name, personal name.The dataset can be used for tasks such as spanish handwriting OCR.
The data (name, year of birth, sex, and number) are from a 100 percent sample of Social Security card applications for 1880 onward.