Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Have you ever wondered how the population landscape of our planet looks in 2025? This dataset brings together the latest population statistics for 233 countries and territories, carefully collected from Worldometers.info — one of the most trusted global data sources.
📊 It reveals how countries are growing, shrinking, and evolving demographically. From population density to fertility rate, from migration trends to urbanization, every number tells a story about humanity’s future.
🌆 You can explore which nations are rapidly expanding, which are aging, and how urban populations are transforming global living patterns. This dataset includes key metrics like yearly population change, net migration, land area, fertility rate, and each country’s share of the world population.
🧠 Ideal for data analysis, visualization, and machine learning, it can be used to study global trends, forecast population growth, or build engaging dashboards in Python, R, or Tableau. It’s also perfect for students and researchers exploring geography, demographics, or development studies.
📈 Whether you’re analyzing Asia’s population boom, Europe’s aging curve, or Africa’s youthful surge — this dataset gives you a complete view of the world’s demographic balance in 2025. 🌎 With 233 rows and 12 insightful columns, it’s ready for your next EDA, visualization, or predictive modeling project.
🚀 Dive in, explore the data, and uncover what the world looks like — one country at a time.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Description
This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.
Attribute Information
Acknowledgements
https://www.worldometers.info/world-population/population-by-country/
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was obtained through web scraping from Worldometer, a website that provides real-time global statistics. The data was collected in September 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset presents projected demographic data for countries and territories in 2025. It includes:
Estimated Population (2025)
Yearly Change Rate and Net Change
Population Density and Land Area
Net Migration, Fertility Rate, and Median Age
Urban Population % and Global Share
The data is sourced from Worldometer and offers insights into global population trends for planning, research, and analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Black Earth town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Black Earth town, the median income for all workers aged 15 years and older, regardless of work hours, was $68,125 for males and $58,750 for females.
Based on these incomes, we observe a gender gap percentage of approximately 14%, indicating a significant disparity between the median incomes of males and females in Black Earth town. Women, regardless of work hours, still earn 86 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Black Earth town, among full-time, year-round workers aged 15 years and older, males earned a median income of $93,000, while females earned $78,542, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Black Earth town offers better opportunities for women in non-full-time positions.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Black Earth. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Black Earth, the median income for all workers aged 15 years and older, regardless of work hours, was $37,083 for males and $36,528 for females.
Based on these incomes, we observe a gender gap percentage of approximately 1%, indicating a significant disparity between the median incomes of males and females in Black Earth. Women, regardless of work hours, still earn 99 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Black Earth, among full-time, year-round workers aged 15 years and older, males earned a median income of $63,125, while females earned $60,729, resulting in a 4% gender pay gap among full-time workers. This illustrates that women earn 96 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the village of Black Earth.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Black Earth, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Black Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Black Earth population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income by race. You can refer the same here
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Contains about 200 of the latest major global news and information
Data have been ethically collected from various sites. Sources are mentioned in the dataset. Please use for educational purposes only.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.
The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.
The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.
National Coverage
Individual
Observation data/ratings [obs]
In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.
In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.
Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.
In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.
The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.
The English version of the questionnaire is provided for download.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.
Facebook
Twitterhttps://mmo-population.com/termshttps://mmo-population.com/terms
New World player activity dataset from MMO Populations, combining monthly enhanced players and 30-day daily estimates generated from public signals.
Facebook
Twitterhttps://mmo-population.com/termshttps://mmo-population.com/terms
Perfect World player activity dataset from MMO Populations, combining monthly enhanced players and 30-day daily estimates generated from public signals.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Lincoln township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Lincoln township, the median income for all workers aged 15 years and older, regardless of work hours, was $49,792 for males and $23,500 for females.
These income figures highlight a substantial gender-based income gap in Lincoln township. Women, regardless of work hours, earn 47 cents for each dollar earned by men. This significant gender pay gap, approximately 53%, underscores concerning gender-based income inequality in the township of Lincoln township.
- Full-time workers, aged 15 years and older: In Lincoln township, among full-time, year-round workers aged 15 years and older, males earned a median income of $75,000, while females earned $56,250, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Lincoln township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lincoln township median household income by race. You can refer the same here
Facebook
TwitterThe Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.
The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.
The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.
National Coverage
Individual
Observation data/ratings [obs]
In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.
In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.
Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.
In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.
The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.
The English version of the questionnaire is provided for download.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.
Facebook
TwitterComprehensive demographic dataset for On Top of the World, Clearwater, FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
Twitterhttp://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
OBSOLETE RELEASE - The use of the GHSL Data Package 2022 (GHS P2022) is currently not recommended. CHECK FOR THE MOST UPDATED VERSION OF GHSL DATASETS AT https://ghsl.jrc.ec.europa.eu/datasets.php - The spatial raster dataset depicts the distribution of population, expressed as the number of people per cell. Residential population estimates between 1975 and 2020 in 5 years intervals and projections to 2025 and 2030 derived from CIESIN GPWv4.11 were disaggregated from census or administrative units to grid cells, informed by the distribution, density, and classification of built-up as mapped in the Global Human Settlement Layer (GHSL) global layer per corresponding epoch.
This dataset is an update of the product released in 2019. Major improvements are the following: use of improved built-up surface maps (GHS-BUILT-S R2022A); use of more recent and detailed population estimates derived from GPWv4.11 integrating both UN World Population Prospects 2019 country population data and World Urbanisation Prospects 2018 data on Cities; better representation of cities population time series; systematic improvement of census coastlines; systematic revision of census units declared as unpopulated; integration of non-residential built-up surface information (GHS-BUILT-S_NRES R2022A); spatial resolution of 100m Mollweide (and 3 arcseconds in WGS84); projections to 2030.
Facebook
TwitterAs of February 2025, it was found that around 14.1 percent of TikTok's global audience were women between the ages of 18 and 24 years, while male users of the same age formed approximately 16.6 percent of the platform's audience. The online audience of the popular social video platform was further composed of 14.6 percent of female users aged between 25 and 34 years, and 20.7 percent of male users in the same age group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Earth population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Have you ever wondered how the population landscape of our planet looks in 2025? This dataset brings together the latest population statistics for 233 countries and territories, carefully collected from Worldometers.info — one of the most trusted global data sources.
📊 It reveals how countries are growing, shrinking, and evolving demographically. From population density to fertility rate, from migration trends to urbanization, every number tells a story about humanity’s future.
🌆 You can explore which nations are rapidly expanding, which are aging, and how urban populations are transforming global living patterns. This dataset includes key metrics like yearly population change, net migration, land area, fertility rate, and each country’s share of the world population.
🧠 Ideal for data analysis, visualization, and machine learning, it can be used to study global trends, forecast population growth, or build engaging dashboards in Python, R, or Tableau. It’s also perfect for students and researchers exploring geography, demographics, or development studies.
📈 Whether you’re analyzing Asia’s population boom, Europe’s aging curve, or Africa’s youthful surge — this dataset gives you a complete view of the world’s demographic balance in 2025. 🌎 With 233 rows and 12 insightful columns, it’s ready for your next EDA, visualization, or predictive modeling project.
🚀 Dive in, explore the data, and uncover what the world looks like — one country at a time.