The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations
This map service shows the locations of healthcare facilities (hospitals, medical centers, federally qualified health centers, home health services, and nursing homes) in the United States. The data was provided by the U.S. Department of Health Human Services and is current as of 2012.The data is symbolized by facility type:Hospital: an institution providing medical and surgical treatment and nursing care for sick or injured people.Medical Center: a health care facility staffed and equipped to care for many patients and for a large number of various kinds of diseases and dysfunctions, using sophisticated technology.Federally Qualified Health Center: a community-based organization that provides comprehensive primary care and preventative care, including health, oral, and mental health/substance abuse services to persons of all ages, regardless of their ability to pay or health insurance status.Home Health Service: health care or supportive care provided in the patient's home by health care professionals (often referred to as home health care or formal care).Nursing Home: provides a type of residential care. They are a place of residence for people who require constant nursing care and have significant deficiencies with activities of daily living.Other data sources include: Data.gov_Other Health Datapalooza focused content that may interest you: Health Datapalooza Health Datapalooza
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
Column Name | Description |
---|---|
city_name | The name of the city where healthcare providers are located. |
result_count | The count of healthcare providers in the city. |
results | Details of healthcare providers in the city. |
created_epoch | The epoch timestamp when the provider's information was created. |
enumeration_type | The type of enumeration for the provider (e.g., NPI-1, NPI-2). |
last_updated_epoch | The epoch timestamp when the provider's information was last updated. |
number | The unique identifier for the healthcare provider. |
addresses | Information about the provider's addresses, including mailing and location addresses. |
country_code | The country code for the provider's address (e.g., US for the United States). |
country_name | The country name for the provider's address. |
address_purpose | The purpose of the address (e.g., MAILING, LOCATION). |
address_type | The type of address (e.g., DOM - Domestic). |
address_1 | The first line of the provider's address. |
address_2 | The second line of the provider's address. |
city | The city where the provider is located. |
state | The state where the provider is located. |
postal_code | The postal code or ZIP code for the provider's location. |
telephone_number | The telephone number for the provider's contact. |
practiceLocations | Details about the provider's practice locations. |
basic | Basic information about the provider, including their name, credentials, and gender. |
first_name | The first name of the healthcare provider. |
last_name | The last name of the healthcare provider. |
middle_name | The middle name of the healthcare provider. |
credential | The credential of the healthcare provider (e.g., PT, DPT). |
sole_proprietor | Indicates whether the provider is a sole proprietor (e.g., YES, NO). |
gender | The gender of the healthcare provider (e.g., M, F). |
enumeration_date | The date when the provider's enumeration was recorded. |
last_updated | The date when the provider's information was last updated. |
taxonomies | Information about the provider's taxonomies, including code, description, state, license, and primary designation. |
identifiers | Additional identifiers for the healthcare provider. |
endpoints | Information about communication endpoints for the provider. |
other_names | Any other names associated with the healthcare provider. |
1. Healthcare Provider Analysis: This dataset can be used to perform in-depth analyses of healthcare providers across various cities. You can extract insights into the distribution of different types of healthcare professionals, their practice locations, and their specialties. This information is valuable for healthcare workforce planning and resource allocation.
2. Geospatial Mapping: Utilize the city names and addresses in the dataset to create geospatial visualizations. You can map the locations of healthcare providers in each city, helping stakeholders identify areas with potential shortages or surpluses of healthcare services.
3. Provider Directory Development: The dataset provides detailed information about healthcare providers, including their names, contact details, and credentials. You can use this data to build a comprehensive healthcare provider directory or search tool, helping patients and healthcare organizations find and connect with the right providers in their area.
If you find this dataset useful, give it an upvote – it's a small gesture that goes a long way! Thanks for your support. 😄
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains detailed demographic and health-related information for individuals alongside their corresponding medical insurance charges. It includes features such as age, sex, BMI, number of children, smoking status, region, and total insurance cost. This dataset is covered from the USA.
The dataset is ideal for building and evaluating machine learning models that predict healthcare costs based on personal and lifestyle factors.
1. age: Age of the individual in years.
2. sex: Biological sex of the individual (male or female).
3. BMI: Body Mass Index — the numeric measure of body fat based on height and weight.
4. children: Number of dependent children covered by the insurance plan.
5. smoker: Smoking status of the individual (yes or no).
6. region: Geographic region of the individual within the United States (northeast, northwest, southeast, or southwest).
7. charges: Individual medical insurance cost billed by the insurer.
Format: CSV (Comma-Separated Values)
Data Volume: Rows: 1,338 records
7 Columns: age, sex, BMI, children, smoker, region, charges
File Size: Approximately 56 KB
This dataset is ideal for a variety of applications:
Medical Cost Prediction: Train regression models to estimate insurance charges based on demographic and lifestyle factors
Health Economics Research: Analyze how factors like smoking, BMI, and age impact healthcare costs.
United States: the dataset includes individuals from four regions: northeast, northwest, southeast, and southwest.
Time Range: The exact dates of data collection are not specified, but the data reflects typical insurance and demographic patterns observed in recent years.
Demographics: Includes a diverse range of individuals: Age Range: From 18 to 64 years old Gender: Male and female Lifestyle Factors: Smoking status and BMI Dependents: Number of children covered by the insurance
CC0
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On September 20, 2021, the following has been updated: The use of analytic dataset as a source.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.
By Health Data New York [source]
This dataset provides comprehensive measures to evaluate the quality of medical services provided to Medicaid beneficiaries by Health Homes, including the Centers for Medicare & Medicaid Services (CMS) Core Set and Health Home State Plan Amendment (SPA). This allows us to gain insight into how well these health homes are performing in terms of delivering high-quality care. Our data sources include the Medicaid Data Mart, QARR Member Level Files, and New York State Delivery System Inform Incentive Program (DSRIP) Data Warehouse. With this data set you can explore essential indicators such as rates for indicators within scope of Core Set Measures, sub domains, domains and measure descriptions; age categories used; denominators of each measure; level of significance for each indicator; and more! By understanding more about Health Home Quality Measures from this resource you can help make informed decisions about evidence based health practices while also promoting better patient outcomes
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains measures that evaluate the quality of care delivered by Health Homes for the Centers for Medicare & Medicaid Services (CMS). With this dataset, you can get an overview of how a health home is performing in terms of quality. You can use this data to compare different health homes and their respective service offerings.
The data used to create this dataset was collected from Medicaid Data Mart, QARR Member Level Files, and New York State Delivery System Incentive Program (DSRIP) Data Warehouse sources.
In order to use this dataset effectively, you should start by looking at the columns provided. These include: Measurement Year; Health Home Name; Domain; Sub Domain; Measure Description; Age Category; Denominator; Rate; Level of Significance; Indicator. Each column provides valuable insight into how a particular health home is performing in various measurements of healthcare quality.
When examining this data, it is important to remember that many variables are included in any given measure and that changes may have occurred over time due to varying factors such as population or financial resources available for healthcare delivery. Furthermore, changes in policy may also affect performance over time so it is important to take these things into account when evaluating the performance of any given health home from one year to the next or when comparing different health homes on a specific measure or set of indicators over time
- Using this dataset, state governments can evaluate the effectiveness of their health home programs by comparing the performance across different domains and subdomains.
- Healthcare providers and organizations can use this data to identify areas for improvement in quality of care provided by health homes and strategies to reduce disparities between individuals receiving care from health homes.
- Researchers can use this dataset to analyze how variations in cultural context, geography, demographics or other factors impact delivery of quality health home services across different locations
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: health-home-quality-measures-beginning-2013-1.csv | Column name | Description | |:--------------------------|:----------------------------------------------------| | Measurement Year | The year in which the data was collected. (Integer) | | Health Home Name | The name of the health home. (String) | | Domain | The domain of the measure. (String) | | Sub Domain | The sub domain of the measure. (String) | | Measure Description | A description of the measure. (String) | | Age Category | The age category of the patient. (String) | | Denominator | The denominator of the measure. (Integer) | | Rate | The rate of the measure. (Float) | | Level of Significance | The level of significance of the measure. (String) | | Indicator | The indicator of the measure. (String) |
...
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
This time series dataset includes viral COVID-19 laboratory test [Polymerase chain reaction (PCR)] results from over 1,000 U.S. laboratories and testing locations including commercial and reference laboratories, public health laboratories, hospital laboratories, and other testing locations. Data are reported to state and jurisdictional health departments in accordance with applicable state or local law and in accordance with the Coronavirus Aid, Relief, and Economic Security (CARES) Act (CARES Act Section 18115).
Data are provisional and subject to change.
Data presented here is representative of diagnostic specimens being tested - not individual people - and excludes serology tests where possible. Data presented might not represent the most current counts for the most recent 3 days due to the time it takes to report testing information. The data may also not include results from all potential testing sites within the jurisdiction (e.g., non-laboratory or point of care test sites) and therefore reflect the majority, but not all, of COVID-19 testing being conducted in the United States.
Sources: CDC COVID-19 Electronic Laboratory Reporting (CELR), Commercial Laboratories, State Public Health Labs, In-House Hospital Labs
Data for each state is sourced from either data submitted directly by the state health department via COVID-19 electronic laboratory reporting (CELR), or a combination of commercial labs, public health labs, and in-house hospital labs. Data is taken from CELR for states that either submit line level data or submit aggregate counts which do not include serology tests.
This dataset contains demographic and personal health information for individuals, along with the corresponding medical insurance charges billed to them. It is commonly used to build predictive models for insurance costs and to explore relationships between factors such as age, BMI, smoking status, and region on medical expenses.
Features: - age: Age of the primary beneficiary (integer) - sex: Gender of the individual (male, female) - bmi: Body mass index, providing a measure of body fat based on height and weight (float) - children: Number of children/dependents covered by the insurance (integer) - smoker: Smoking status of the individual (yes, no) - region: Residential area in the US (northeast, northwest, southeast, southwest) - charges: Individual medical costs billed by health insurance (float, in USD)
Applications: This dataset is frequently used in regression modeling, cost prediction, and data visualization tasks. It is ideal for learning how lifestyle and demographic factors impact healthcare expenses and serves as a foundational dataset for applied machine learning in health economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Hospital Beds: per 1000 People data was reported at 2.900 Number in 2011. This records a decrease from the previous number of 3.000 Number for 2010. United States US: Hospital Beds: per 1000 People data is updated yearly, averaging 5.000 Number from Dec 1960 (Median) to 2011, with 43 observations. The data reached an all-time high of 9.200 Number in 1960 and a record low of 2.900 Number in 2011. United States US: Hospital Beds: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Hospital beds include inpatient beds available in public, private, general, and specialized hospitals and rehabilitation centers. In most cases beds for both acute and chronic care are included.; ; Data are from the World Health Organization, supplemented by country data.; Weighted average;
By US Open Data Portal, data.gov [source]
This dataset contains over 300 examples of health IT policy levers used by states to advance interoperability, promote health IT and support delivery system reform. The U.S Government's Office of National Coordinator for Health Information Technology (ONC) has curated this catalog as part of its Health IT State Policy Levers Compendium. It provides an exhaustive directory on the policy levers being utilized, along with information on the state enacting them and their official sources. This collection seeks to act as a comprehensive guide for government officials and healthcare providers who are interested in state-based initiatives for optimizing health information technology. Explore the strategies your own state might be using to unlock improved patient outcomes!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides information on policy levers used by various states in the United States to promote health IT and advance interoperability. The comprehensive list includes over 300 documented examples of health IT policy levers used by these states. This catalog can be used to identify which specific policy levers are being used, as well as what activities they are associated with.
If you're interested in learning more about how states use health IT policy levers, this dataset is a great resource. It contains detailed information on each entry, including the state where it's being used, the status of that activity, a description of the activity and its purpose, and an official source for additional information about that particular entry.
Using this data set is easy - simply search for specific states or find out which kinds of activities each state is using their health IT policy levers for. You can also look up any specific application or implementation detail from each record by opening up its corresponding source URL link . With all this information at hand you can better understand how states use their health IT tools to make a difference in advancing interoperability within healthcare systems today!
- It can be used to provide states with potential models of successful health IT policy levers, allowing them to learn from the experiences of other states in developing and implementing health IT legislation.
- The dataset can also be used by researchers looking to study the effectiveness of existing health care policy levers, as well as to identify any gaps that need to be filled in order for certain policies to have a greater overall impact.
- Additionally, it could be used by industry stakeholders such as hospitals or other healthcare organizations for benchmarking their own efforts related to IT implementation, such as understanding what activities are being undertaken and which sources are being used for best practices or additional resources when making decisions related to new technology implementations into an organization's operations and services
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: policy-levers-activities-catalog-csv-1.csv | Column name | Description | |:-------------------------|:----------------------------------------------------------------------------------------------| | state | The state in which the policy lever is being used. (String) | | policy_lever | Type of policy lever being used. (String) | | activity_status | Status of activity (e.g., active or inactive). (String) | | activity_description | Description of activity. (String) | | source | Source from where data is gathered from. (String) | | source_url | A link that points directly back to an original sources with additional information. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit US Open Data Portal, data.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Health Insurance Coverage’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/hhs/health-insurance on 28 January 2022.
--- Dataset description provided by original source is as follows ---
The Affordable Care Act (ACA) is the name for the comprehensive health care reform law and its amendments which addresses health insurance coverage, health care costs, and preventive care. The law was enacted in two parts: The Patient Protection and Affordable Care Act was signed into law on March 23, 2010 by President Barack Obama and was amended by the Health Care and Education Reconciliation Act on March 30, 2010.
This dataset provides health insurance coverage data for each state and the nation as a whole, including variables such as the uninsured rates before and after Obamacare, estimates of individuals covered by employer and marketplace healthcare plans, and enrollment in Medicare and Medicaid programs.
The health insurance coverage data was compiled from the US Department of Health and Human Services and US Census Bureau.
How has the Affordable Care Act changed the rate of citizens with health insurance coverage? Which states observed the greatest decline in their uninsured rate? Did those states expand Medicaid program coverage and/or implement a health insurance marketplace? What do you predict will happen to the nationwide uninsured rate in the next five years?
--- Original source retains full ownership of the source dataset ---
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Metric details:
Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.
October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.
December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.
January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data shows healthcare utilization for asthma by Allegheny County residents 18 years of age and younger. It counts asthma-related visits to the Emergency Department (ED), hospitalizations, urgent care visits, and asthma controller medication dispensing events.
The asthma data was compiled as part of the Allegheny County Health Department’s Asthma Task Force, which was established in 2018. The Task Force was formed to identify strategies to decrease asthma inpatient and emergency utilization among children (ages 0-18), with special focus on children receiving services funded by Medicaid. Data is being used to improve the understanding of asthma in Allegheny County, and inform the recommended actions of the task force. Data will also be used to evaluate progress toward the goal of reducing asthma-related hospitalization and ED visits.
Regarding this data, asthma is defined using the International Classification of Diseases, Tenth Revision (IDC-10) classification system code J45.xxx. The ICD-10 system is used to classify diagnoses, symptoms, and procedures in the U.S. healthcare system.
Children seeking care for an asthma-related claim in 2017 are represented in the data. Data is compiled by the Health Department from medical claims submitted to three health plans (UPMC, Gateway Health, and Highmark). Claims may also come from people enrolled in Medicaid plans managed by these insurers. The Health Department estimates that 74% of the County’s population aged 0-18 is represented in the data.
Users should be cautious of using administrative claims data as a measure of disease prevalence and interpreting trends over time. Missing from the data are the uninsured, members in participating plans enrolled for less than 90 continuous days in 2017, children with an asthma-related condition that did not file a claim in 2017, and children participating in plans managed by insurers that did not share data with the Health Department.
Data users should also be aware that diagnoses may also be subject to misclassification, and that children with an asthmatic condition may not be diagnosed. It is also possible that some children may be counted more than once in the data if they are enrolled in a plan by more than one participating insurer and file a claim on each policy in the same calendar year.
Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.
Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.
In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.
According to experts, that is the largest exodus of public health leaders in American history.
Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.
The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.
The AP and KHN found that:
To get total numbers of exits by state, broken down by state and local departments, use this query
KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.
The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.
Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.
The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.
Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.
Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.
KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.
Findings and the data should be cited as: "According to a KHN and Associated Press report."
If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.
https://www.icpsr.umich.edu/web/ICPSR/studies/36144/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36144/terms
These data are being released in BETA version to facilitate early access to the study for research purposes. This collection has not been fully processed by NACDA or ICPSR at this time; the original materials provided by the principal investigator were minimally processed and converted to other file types for ease of use. As the study is further processed and given enhanced features by ICPSR, users will be able to access the updated versions of the study. Please report any data errors or problems to user support and we will work with you to resolve any data related issues. The National Health Interview Survey (NHIS) is conducted annually and sponsored by the National Center for Health Statistics (NCHS), which is part of the U.S. Public Health Service. The purpose of the NHIS is to obtain information about the amount and distribution of illness, its effects in terms of disability and chronic impairments, and the kinds of health services people receive across the United States population through the collection and analysis of data on a broad range of health topics. The redesigned NHIS questionnaire introduced in 1997 (see National Health Interview Survey, 1997 [ICPSR 2954]) consists of a core that remains largely unchanged from year to year, plus an assortment of supplements varying from year to year. The 2010 NHIS Core consists of three modules: Family, Sample Adult, and Sample Child. The datasets derived from these modules include Household Level, Family Level, Person Level, Injury/Poison Episode Level, Injury/Poison Verbatim Level, Sample Adult Level, and Sample Child level. The 2010 NHIS supplements consist of stand alone datasets for Cancer Level and Quality of Life data derived from the Sample Adult core and Disability Questions Tests 2010 Level derived from the Family core questionnaire. Additional supplementary questions can be found in the Sample Child dataset on the topics of cancer, immunization, mental health, and mental health services and in the Sample Adult dataset on the topics of epilepsy, immunization, and occupational health. Part 1, Household Level, contains data on type of living quarters, number of families in the household responding and not responding, and the month and year of the interview for each sampling unit. Parts 2-5 are based on the Family Core questionnaire. Part 2, Family Level, provides information on all family members with respect to family size, family structure, health status, limitation of daily activities, cognitive impairment, health conditions, doctor visits, hospital stays, health care access and utilization, employment, income, participation in government assistance programs, and basic demographic information. Part 3, Person Level, includes information on sex, age, race, marital status, education, family income, major activities, health status, health care costs, activity limits, and employment status. Parts 4 and 5, Injury/Poisoning Episode Level and Injury/Poisoning Verbatim Level, consist of questions about injuries and poisonings that resulted in medical consultations for any family members and contains information about the external cause and nature of the injury or poisoning episode and what the person was doing at the time of the injury or poisoning episode, in addition to the date and place of occurrence. A randomly-selected adult in each family was interviewed for Part 6, Sample Adult Level, regarding specific health issues, the relation between employment and health, health status, health care and doctor visits, limitation of daily activities, immunizations, and behaviors such as smoking, alcohol consumption, and physical activity. Demographic information, including occupation and industry, also was collected. The respondents to Part 6 also completed Part 7, Cancer Level, which consists of a set of supplemental questions about diet and nutrition, physical activity, tobacco, cancer screening, genetic testing, family history, and survivorship. Part 8, Sample Child Level, provides information from an adult in the household on medical conditions of one child in the household, such as developmental or intellectual disabilities, respiratory problems, seizures, allergies, and use of special equipment like hearing aids, braces, or wheelchairs. Parts 9 through 13 comprise the additional Supplements and Paradata for the 2010 NHIS. Part 9, Disability Questions Tests 2010 Level
NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97. COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15).
The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting.
No statistical analysis is applied to account for non-response and/or to account for missing data.
The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility.
On April 27, 2022 the following pediatric fields were added:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data was reported at 21.365 % in 2014. This records a decrease from the previous number of 21.927 % for 2013. United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data is updated yearly, averaging 23.966 % from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 26.623 % in 1998 and a record low of 21.365 % in 2014. United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Out of pocket expenditure is any direct outlay by households, including gratuities and in-kind payments, to health practitioners and suppliers of pharmaceuticals, therapeutic appliances, and other goods and services whose primary intent is to contribute to the restoration or enhancement of the health status of individuals or population groups. It is a part of private health expenditure.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;
The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations