Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 20-24 years (347) | Female # 50-54 years (433). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bulgaria Population: Rural: 100 Years and Above data was reported at 107.000 Person in 2023. This records an increase from the previous number of 101.000 Person for 2022. Bulgaria Population: Rural: 100 Years and Above data is updated yearly, averaging 107.000 Person from Dec 2001 (Median) to 2023, with 23 observations. The data reached an all-time high of 221.000 Person in 2009 and a record low of 68.000 Person in 2018. Bulgaria Population: Rural: 100 Years and Above data remains active status in CEIC and is reported by National Statistical Institute. The data is categorized under Global Database’s Bulgaria – Table BG.G002: Population: by Age Group and Sex.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of White Earth by race. It includes the distribution of the Non-Hispanic population of White Earth across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of White Earth across relevant racial categories.
Key observations
With a zero Hispanic population, White Earth is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 76 (100% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada Population: 100 Years & Over data was reported at 11.672 Person th in 2024. This records an increase from the previous number of 11.493 Person th for 2023. Canada Population: 100 Years & Over data is updated yearly, averaging 6.603 Person th from Jun 2000 (Median) to 2024, with 25 observations. The data reached an all-time high of 11.672 Person th in 2024 and a record low of 3.393 Person th in 2000. Canada Population: 100 Years & Over data remains active status in CEIC and is reported by Statistics Canada. The data is categorized under Global Database’s Canada – Table CA.G001: Population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.
For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Maintainer: Sarah E., Castle
Data lineage:
The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Forest proximate people - 5km cutoff distance"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Russia Population: 100 Years and Older data was reported at 17,580.000 Person in 2017. This records an increase from the previous number of 15,703.000 Person for 2016. Russia Population: 100 Years and Older data is updated yearly, averaging 7,993.000 Person from Dec 1990 (Median) to 2017, with 28 observations. The data reached an all-time high of 17,580.000 Person in 2017 and a record low of 5,814.000 Person in 1997. Russia Population: 100 Years and Older data remains active status in CEIC and is reported by Federal State Statistics Service. The data is categorized under Russia Premium Database’s Demographic and Labour Market – Table RU.GA005: Population: by Age: 0 to 100 Years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Czech Republic Population: 100 Years and Above data was reported at 911.000 Person in 2023. This records an increase from the previous number of 787.000 Person for 2022. Czech Republic Population: 100 Years and Above data is updated yearly, averaging 676.500 Person from Dec 2000 (Median) to 2023, with 24 observations. The data reached an all-time high of 911.000 Person in 2023 and a record low of 187.000 Person in 2000. Czech Republic Population: 100 Years and Above data remains active status in CEIC and is reported by Czech Statistical Office. The data is categorized under Global Database’s Czech Republic – Table CZ.G003: Population: by Sex and Age: Annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data is from:
https://simplemaps.com/data/world-cities
We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.
Our database is:
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population, Total for United States (POPTOTUSA647NWDB) from 1960 to 2024 about population and USA.
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
OBSOLETE RELEASE - The use of the GHSL Data Package 2022 (GHS P2022) is currently not recommended. CHECK FOR THE MOST UPDATED VERSION OF GHSL DATASETS AT https://ghsl.jrc.ec.europa.eu/datasets.php - The spatial raster dataset depicts the distribution of population, expressed as the number of people per cell. Residential population estimates between 1975 and 2020 in 5 years intervals and projections to 2025 and 2030 derived from CIESIN GPWv4.11 were disaggregated from census or administrative units to grid cells, informed by the distribution, density, and classification of built-up as mapped in the Global Human Settlement Layer (GHSL) global layer per corresponding epoch.
This dataset is an update of the product released in 2019. Major improvements are the following: use of improved built-up surface maps (GHS-BUILT-S R2022A); use of more recent and detailed population estimates derived from GPWv4.11 integrating both UN World Population Prospects 2019 country population data and World Urbanisation Prospects 2018 data on Cities; better representation of cities population time series; systematic improvement of census coastlines; systematic revision of census units declared as unpopulated; integration of non-residential built-up surface information (GHS-BUILT-S_NRES R2022A); spatial resolution of 100m Mollweide (and 3 arcseconds in WGS84); projections to 2030.
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Stevens et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020. These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map populations for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Madrid, M., & Pina, L. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Rome, FAO.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Slovakia Population: Age: 100 and Above data was reported at 892.000 Person in 2016. This records an increase from the previous number of 770.000 Person for 2015. Slovakia Population: Age: 100 and Above data is updated yearly, averaging 142.500 Person from Dec 1945 (Median) to 2016, with 66 observations. The data reached an all-time high of 1,090.000 Person in 2010 and a record low of 3.000 Person in 1962. Slovakia Population: Age: 100 and Above data remains active status in CEIC and is reported by Statistical Office of the Slovak Republic. The data is categorized under Global Database’s Slovakia – Table SK.G002: Population: Annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID vaccination vs. mortality ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sinakaraji/covid-vaccination-vs-death on 12 November 2021.
--- Dataset description provided by original source is as follows ---
The COVID-19 outbreak has brought the whole planet to its knees.More over 4.5 million people have died since the writing of this notebook, and the only acceptable way out of the disaster is to vaccinate all parts of society. Despite the fact that the benefits of vaccination have been proved to the world many times, anti-vaccine groups are springing up all over the world. This data set was generated to investigate the impact of coronavirus vaccinations on coronavirus mortality.
country | iso_code | date | total_vaccinations | people_vaccinated | people_fully_vaccinated | New_deaths | population | ratio |
---|---|---|---|---|---|---|---|---|
country name | iso code for each country | date that this data belong | number of all doses of COVID vaccine usage in that country | number of people who got at least one shot of COVID vaccine | number of people who got full vaccine shots | number of daily new deaths | 2021 country population | % of vaccinations in that country at that date = people_vaccinated/population * 100 |
This dataset is a combination of the following three datasets:
1.https://www.kaggle.com/gpreda/covid-world-vaccination-progress
2.https://covid19.who.int/WHO-COVID-19-global-data.csv
3.https://www.kaggle.com/rsrishav/world-population
you can find more detail about this dataset by reading this notebook:
https://www.kaggle.com/sinakaraji/simple-linear-regression-covid-vaccination
Afghanistan | Albania | Algeria | Andorra | Angola |
Anguilla | Antigua and Barbuda | Argentina | Armenia | Aruba |
Australia | Austria | Azerbaijan | Bahamas | Bahrain |
Bangladesh | Barbados | Belarus | Belgium | Belize |
Benin | Bermuda | Bhutan | Bolivia (Plurinational State of) | Brazil |
Bosnia and Herzegovina | Botswana | Brunei Darussalam | Bulgaria | Burkina Faso |
Cambodia | Cameroon | Canada | Cabo Verde | Cayman Islands |
Central African Republic | Chad | Chile | China | Colombia |
Comoros | Cook Islands | Costa Rica | Croatia | Cuba |
Curaçao | Cyprus | Denmark | Djibouti | Dominica |
Dominican Republic | Ecuador | Egypt | El Salvador | Equatorial Guinea |
Estonia | Ethiopia | Falkland Islands (Malvinas) | Fiji | Finland |
France | French Polynesia | Gabon | Gambia | Georgia |
Germany | Ghana | Gibraltar | Greece | Greenland |
Grenada | Guatemala | Guinea | Guinea-Bissau | Guyana |
Haiti | Honduras | Hungary | Iceland | India |
Indonesia | Iran (Islamic Republic of) | Iraq | Ireland | Isle of Man |
Israel | Italy | Jamaica | Japan | Jordan |
Kazakhstan | Kenya | Kiribati | Kuwait | Kyrgyzstan |
Lao People's Democratic Republic | Latvia | Lebanon | Lesotho | Liberia |
Libya | Liechtenstein | Lithuania | Luxembourg | Madagascar |
Malawi | Malaysia | Maldives | Mali | Malta |
Mauritania | Mauritius | Mexico | Republic of Moldova | Monaco |
Mongolia | Montenegro | Montserrat | Morocco | Mozambique |
Myanmar | Namibia | Nauru | Nepal | Netherlands |
New Caledonia | New Zealand | Nicaragua | Niger | Nigeria |
Niue | North Macedonia | Norway | Oman | Pakistan |
occupied Palestinian territory, including east Jerusalem | ||||
Panama | Papua New Guinea | Paraguay | Peru | Philippines |
Poland | Portugal | Qatar | Romania | Russian Federation |
Rwanda | Saint Kitts and Nevis | Saint Lucia | ||
Saint Vincent and the Grenadines | Samoa | San Marino | Sao Tome and Principe | Saudi Arabia |
Senegal | Serbia | Seychelles | Sierra Leone | Singapore |
Slovakia | Slovenia | Solomon Islands | Somalia | South Africa |
Republic of Korea | South Sudan | Spain | Sri Lanka | Sudan |
Suriname | Sweden | Switzerland | Syrian Arab Republic | Tajikistan |
United Republic of Tanzania | Thailand | Togo | Tonga | Trinidad and Tobago |
Tunisia | Turkey | Turkmenistan | Turks and Caicos Islands | Tuvalu |
Uganda | Ukraine | United Arab Emirates | The United Kingdom | United States of America |
Uruguay | Uzbekistan | Vanuatu | Venezuela (Bolivarian Republic of) | Viet Nam |
Wallis and Futuna | Yemen | Zambia | Zimbabwe |
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 20-24 years (347) | Female # 50-54 years (433). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here