In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.
As of 2024, an individual living in South Africa with less than 1,109 South African rand (roughly 62.14 U.S. dollars) per month was considered poor. Furthermore, individuals having 796 South African rand (approximately 44.60 U.S. dollars) a month available for food were living below the poverty line according to South African national standards. Absolute poverty National poverty lines are affected by changes in the patterns of household consumers and fluctuations in prices of services and goods. They are calculated based on the consumer price indices (CPI) of both food and non-food items separately. The national poverty line is not the only applicable threshold. For instance,13.2 million people in South Africa were living under 2.15 U.S. dollars, which is the international absolute poverty threshold defined by the World Bank. Most unequal in the globe A prominent aspect of South Africa’s poverty is related to extreme income inequality. The country has the highest income Gini index globally at 63 percent as of 2023. One of the crucial obstacles to combating poverty and inequality in the country is linked to job availability. In fact, youth unemployment was as high as 49.14 percent in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Poverty Headcount Ratio at National Poverty Lines: % of Population data was reported at 55.500 % in 2014. This records an increase from the previous number of 53.200 % for 2010. South Africa ZA: Poverty Headcount Ratio at National Poverty Lines: % of Population data is updated yearly, averaging 58.800 % from Dec 2005 (Median) to 2014, with 4 observations. The data reached an all-time high of 66.600 % in 2005 and a record low of 53.200 % in 2010. South Africa ZA: Poverty Headcount Ratio at National Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank.WDI: Poverty. National poverty headcount ratio is the percentage of the population living below the national poverty lines. National estimates are based on population-weighted subgroup estimates from household surveys.; ; World Bank, Global Poverty Working Group. Data are compiled from official government sources or are computed by World Bank staff using national (i.e. country–specific) poverty lines.; ; This series only includes estimates that to the best of our knowledge are reasonably comparable over time for a country. Due to differences in estimation methodologies and poverty lines, estimates should not be compared across countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Community Survey (CS) is a nationally representative, large-scale household survey which was conducted from February to March 2007. The Community Survey is designed to provide information on the trends and levels of demographic and socio-economic data, such as population size and distribution; the extent of poor households; access to facilities and services, and the levels of employment/unemployment at national, provincial and municipality level. The data can be used to assist government and the private sector in the planning, evaluation and monitoring of programmes and policies. The information collected can also be used to assess the impact of socio-economic policies and provide an indication as to how far the country has gone in its strides to eradicate poverty. Censuses 1996 and 2001 are the only all-inclusive censuses that Statistics South Africa has thus far conducted under the new democratic dispensation. Demographic and socio-economic data were collected and the results have enabled government and all other users of this information to make informed decisions. When cabinet took a decision that Stats SA should not conduct a census in 2006, it created a gap in information or data between Census 2001 and the next Census scheduled to be carried out in 2011. A decision was therefore taken to carry out the Community Survey in 2007. The main objectives of the survey were: · To provide estimates at lower geographical levels than existing household surveys; · To build human, management and logistical capacities for Census 2011; and · To provide inputs into the preparation of the mid-year population projections. The wider project strategic theme is to provide relevant statistical information that meets user needs and aspirations. Some of the main topics that are covered by the survey include demography, migration, disability and social grants, educational levels, employment and economic activities.
This is aggregated data of individuals or households. The data originates from the South African censuses of 1996 and 2001 and covers the whole country at a municipal level. In order to calculate the aggregate poverty gap a cross tabulation of household income by household size, municipality and population group was drawn from the 2001 census. The poverty gap of each poor household was summed to arrive at the aggregate poverty gap for each municipality.
https://datacatalog.worldbank.org/public-licenses?fragment=researchhttps://datacatalog.worldbank.org/public-licenses?fragment=research
The Community Survey (CS) is a nationally representative, large-scale household survey which was conducted from February to March 2007. The Community Survey is designed to provide information on the trends and levels of demographic and socio-economic data, such as population size and distribution; the extent of poor households; access to facilities and services, and the levels of employment/unemployment at national, provincial and municipality level. The data can be used to assist government and the private sector in the planning, evaluation and monitoring of programmes and policies. The information collected can also be used to assess the impact of socio-economic policies and provide an indication as to how far the country has gone in its strides to eradicate poverty.
Censuses 1996 and 2001 are the only all-inclusive censuses that Statistics South Africa has thus far conducted under the new democratic dispensation. Demographic and socio-economic data were collected and the results have enabled government and all other users of this information to make informed decisions. When cabinet took a decision that Stats SA should not conduct a census in 2006, it created a gap in information or data between Census 2001 and the next Census scheduled to be carried out in 2011. A decision was therefore taken to carry out the Community Survey in 2007.
The main objectives of the survey were:
· To provide estimates at lower geographical levels than existing household surveys;
· To build human, management and logistical capacities for Census 2011; and
· To provide inputs into the preparation of the mid-year population projections.
The wider project strategic theme is to provide relevant statistical information that meets user needs and aspirations. Some of the main topics that are covered by the survey include demography, migration, disability and social grants, educational levels, employment and economic activities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A curated list of food prices in South Africa, reported monthly on http://www.pacsa.org.za "What is the PACSA Food Basket? The PACSA Food Basket is an index for food price inflation. It provides insight into the affordability of food and other essential household requirements for working class households in a context of low wages, social grants and high levels of unemployment. The PACSA Food Basket tracks the prices of a basket of 36 basic foods which working class poor households, with 7 members, said they buy every month (based on conversations with women). The food basket is not nutritionally complete; it is a reflection of reality - what people are buying. Data is collected on the same day between the 21st and 24th of each month from six different retail stores which service the lower-income market in Pietermaritzburg, KwaZulu-Natal. Women have told us that they base their purchasing decisions on price and whether the quality of the food is not too poor. Women are savy shoppers and so foods and their prices in each store are selected on this basis. The PACSA Food Basket tracks the foods working class households buy, in the quantities they buy them in and from the supermarkets they buy them from. PACSA has been tracking the price of the basket since 2006. We release our Food Price Barometer monthly and consolidate the data for an annual report to coincide with World Food Day annually on the 16th October." - PACSA website
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2008, the South African Presidency embarked on an intensive effort to track changes in the well-being of South Africans by closely following about 28 000 people young and old, rich and poor over a period of years. This was undertaken through initiating the National Income Dynamics Study (NIDS). The NIDS survey is the first national panel study to document the dynamic structure of a sample of household members in South Africa and changes in their incomes, expenditures, assets, access to services, education, health, and other dimensions of well-being. A key feature of the panel study is its ability to follow people as they move out of their original 7 305 households. In doing this, the movement of household members as they leave and/or return to the household or set up their own households will be adequately captured in subsequent waves of this panel study. The first “baseline” wave of NIDS was conducted by the Southern Africa Labour and Development Research Unit (SALDRU) based at the University of Cape Town's School of Economics. The first wave of fieldwork commenced in February 2008, and data and report released in July 2009. The design of NIDS envisaged data collection every two years. Elsewhere in the world such surveys have been invaluable in promoting understanding of who is making progress in a society and who is not and, importantly, what factors are driving these dynamics. In addition, panel data is invaluable for the purposes of evaluating and monitoring the efficacy of social policies and programmes. This is because the panel allows researchers and policy analysts to see how households and individuals are impacted when they become eligible for these programmes.
The collective action of social movements is often said to be one of the most effective strategies that the poor can use in addressing their poverty. However, little is known about: the number, diversity and extent of such movements in particular national contexts; their overall importance in processes of and debates around poverty reduction; and the strategies they use to address the needs of their members. Most research has focussed either on individual or small sets of movements, with less attention paid to the overall significance of the movements at wider territorial and national scales. This research addresses these themes and knowledge gaps. To assess the overall significance of movements for poverty reduction, it identifies, maps and conducts basic analysis of movements active in Peru and South Africa. The second phase of research addresses in more detail how and why movements adopt particular strategies in their relationships with the state, how these strategies affect the overall influence of movements on poverty reduction and how these strategies and effects vary according to the political context. This is done through a small number of comparative case studies conducted in collaboration with these movements. These movements will be selected from the initial mapping.
The main purpose of the National Student Financial Aid Scheme (NSFAS) is to enable young people from poor households to obtain a higher education. This is essential for expanding South Africa’s skills base and a powerful mechanism for breaking the intergenerational cycle of household poverty and exclusion. Tertiary education is unaffordable for most households (see Figure 1). While the average full cost of study for a single year at university was about R28 000 in 2003, this figure was three times greater than the incomes of households in the poorest 20% of the population. It was also more than 30% greater than the annual incomes of households in the second poorest quintile, and just 20% less than the total income of households in the middle 20%. In 2003, in other words, none of the poorest 50% of households could realistically afford to send a child to university.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This map is included in a global study on mapping marginality focusing on Sub-Saharan Africa and South Asia. The Dimensions of Marginality are based on different data sources representing different spheres of life. The dataset used for this approach (Marginality Hotspots) can also be found here: (link to datasett???). Five different dimenstion of marginality were defined and based on their thresholds overlayed to identify those areas where more than only 1 or 2 dimensions occur but several once which make these areas more marginal. With regard to the project MARGIP especially those people are at risk who are marginalized and poor and are thereby lacking possibilities due to missing access to capital and resources but also by being remote. The number of poor are the once we want to make visible. Therefore data by HarvestChoice on Poverty Mass representing the number of people living in poverty were overlayed with dimensions of marginality to give an impression on how many people are living in these spots and are thereby being poor and marginal. See also: http://www.zef.de/fileadmin/webfiles/downloads/zef_wp/wp88.pdf . Quality/Lineage: Poverty Data was provided and generated by Harvest Choice GIS lab. Marginality hotspots are based on the approach by Graw, V. using five dimensions of marginality. In ArcGIS thresholds were defined based on percentages and overlapping dimensions. Using raster data this data was reclassified and overlayed to build a new classification with regard to the here presented purpose.
Goal 1End poverty in all its forms everywhereTarget 1.1: By 2030, eradicate extreme poverty for all people everywhere, currently measured as people living on less than $1.25 a dayIndicator 1.1.1: Proportion of the population living below the international poverty line by sex, age, employment status and geographic location (urban/rural)SI_POV_DAY1: Proportion of population below international poverty line (%)SI_POV_EMP1: Employed population below international poverty line, by sex and age (%)Target 1.2: By 2030, reduce at least by half the proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitionsIndicator 1.2.1: Proportion of population living below the national poverty line, by sex and ageSI_POV_NAHC: Proportion of population living below the national poverty line (%)Indicator 1.2.2: Proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitionsSD_MDP_MUHC: Proportion of population living in multidimensional poverty (%)SD_MDP_ANDI: Average proportion of deprivations for people multidimensionally poor (%)SD_MDP_MUHHC: Proportion of households living in multidimensional poverty (%)SD_MDP_CSMP: Proportion of children living in child-specific multidimensional poverty (%)Target 1.3: Implement nationally appropriate social protection systems and measures for all, including floors, and by 2030 achieve substantial coverage of the poor and the vulnerableIndicator 1.3.1: Proportion of population covered by social protection floors/systems, by sex, distinguishing children, unemployed persons, older persons, persons with disabilities, pregnant women, newborns, work-injury victims and the poor and the vulnerableSI_COV_MATNL: [ILO] Proportion of mothers with newborns receiving maternity cash benefit (%)SI_COV_POOR: [ILO] Proportion of poor population receiving social assistance cash benefit, by sex (%)SI_COV_SOCAST: [World Bank] Proportion of population covered by social assistance programs (%)SI_COV_SOCINS: [World Bank] Proportion of population covered by social insurance programs (%)SI_COV_CHLD: [ILO] Proportion of children/households receiving child/family cash benefit, by sex (%)SI_COV_UEMP: [ILO] Proportion of unemployed persons receiving unemployment cash benefit, by sex (%)SI_COV_VULN: [ILO] Proportion of vulnerable population receiving social assistance cash benefit, by sex (%)SI_COV_WKINJRY: [ILO] Proportion of employed population covered in the event of work injury, by sex (%)SI_COV_BENFTS: [ILO] Proportion of population covered by at least one social protection benefit, by sex (%)SI_COV_DISAB: [ILO] Proportion of population with severe disabilities receiving disability cash benefit, by sex (%)SI_COV_LMKT: [World Bank] Proportion of population covered by labour market programs (%)SI_COV_PENSN: [ILO] Proportion of population above statutory pensionable age receiving a pension, by sex (%)Target 1.4: By 2030, ensure that all men and women, in particular the poor and the vulnerable, have equal rights to economic resources, as well as access to basic services, ownership and control over land and other forms of property, inheritance, natural resources, appropriate new technology and financial services, including microfinanceIndicator 1.4.1: Proportion of population living in households with access to basic servicesSP_ACS_BSRVH2O: Proportion of population using basic drinking water services, by location (%)SP_ACS_BSRVSAN: Proportion of population using basic sanitation services, by location (%)Indicator 1.4.2: Proportion of total adult population with secure tenure rights to land, (a) with legally recognized documentation, and (b) who perceive their rights to land as secure, by sex and type of tenureSP_LGL_LNDDOC: Proportion of people with legally recognized documentation of their rights to land out of total adult population, by sex (%)SP_LGL_LNDSEC: Proportion of people who perceive their rights to land as secure out of total adult population, by sex (%)SP_LGL_LNDSTR: Proportion of people with secure tenure rights to land out of total adult population, by sex (%)Target 1.5: By 2030, build the resilience of the poor and those in vulnerable situations and reduce their exposure and vulnerability to climate-related extreme events and other economic, social and environmental shocks and disastersIndicator 1.5.1: Number of deaths, missing persons and directly affected persons attributed to disasters per 100,000 populationVC_DSR_MISS: Number of missing persons due to disaster (number)VC_DSR_AFFCT: Number of people affected by disaster (number)VC_DSR_MORT: Number of deaths due to disaster (number)VC_DSR_MTMP: Number of deaths and missing persons attributed to disasters per 100,000 population (number)VC_DSR_MMHN: Number of deaths and missing persons attributed to disasters (number)VC_DSR_DAFF: Number of directly affected persons attributed to disasters per 100,000 population (number)VC_DSR_IJILN: Number of injured or ill people attributed to disasters (number)VC_DSR_PDAN: Number of people whose damaged dwellings were attributed to disasters (number)VC_DSR_PDYN: Number of people whose destroyed dwellings were attributed to disasters (number)VC_DSR_PDLN: Number of people whose livelihoods were disrupted or destroyed, attributed to disasters (number)Indicator 1.5.2: Direct economic loss attributed to disasters in relation to global gross domestic product (GDP)VC_DSR_GDPLS: Direct economic loss attributed to disasters (current United States dollars)VC_DSR_LSGP: Direct economic loss attributed to disasters relative to GDP (%)VC_DSR_AGLH: Direct agriculture loss attributed to disasters (current United States dollars)VC_DSR_HOLH: Direct economic loss in the housing sector attributed to disasters (current United States dollars)VC_DSR_CILN: Direct economic loss resulting from damaged or destroyed critical infrastructure attributed to disasters (current United States dollars)VC_DSR_CHLN: Direct economic loss to cultural heritage damaged or destroyed attributed to disasters (millions of current United States dollars)VC_DSR_DDPA: Direct economic loss to other damaged or destroyed productive assets attributed to disasters (current United States dollars)Indicator 1.5.3: Number of countries that adopt and implement national disaster risk reduction strategies in line with the Sendai Framework for Disaster Risk Reduction 2015–2030SG_DSR_LGRGSR: Score of adoption and implementation of national DRR strategies in line with the Sendai FrameworkSG_DSR_SFDRR: Number of countries that reported having a National DRR Strategy which is aligned to the Sendai FrameworkIndicator 1.5.4: Proportion of local governments that adopt and implement local disaster risk reduction strategies in line with national disaster risk reduction strategiesSG_DSR_SILS: Proportion of local governments that adopt and implement local disaster risk reduction strategies in line with national disaster risk reduction strategies (%)SG_DSR_SILN: Number of local governments that adopt and implement local DRR strategies in line with national strategies (number)SG_GOV_LOGV: Number of local governments (number)Target 1.a: Ensure significant mobilization of resources from a variety of sources, including through enhanced development cooperation, in order to provide adequate and predictable means for developing countries, in particular least developed countries, to implement programmes and policies to end poverty in all its dimensionsIndicator 1.a.1: Total official development assistance grants from all donors that focus on poverty reduction as a share of the recipient country’s gross national incomeDC_ODA_POVLG: Official development assistance grants for poverty reduction, by recipient countries (percentage of GNI)DC_ODA_POVDLG: Official development assistance grants for poverty reduction, by donor countries (percentage of GNI)DC_ODA_POVG: Official development assistance grants for poverty reduction (percentage of GNI)Indicator 1.a.2: Proportion of total government spending on essential services (education, health and social protection)SD_XPD_ESED: Proportion of total government spending on essential services, education (%)Target 1.b: Create sound policy frameworks at the national, regional and international levels, based on pro-poor and gender-sensitive development strategies, to support accelerated investment in poverty eradication actionsIndicator 1.b.1: Pro-poor public social spending
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South African policymakers are endeavouring to ensure that the poor have better access to financial services. However, a lack of understanding of the financial needs of poor households impedes a broad strategy to attend to this need. The Financial Diaries study addresses this knowledge gap by examining financial management in rural and urban households. The study is a year-long household survey based on fortnightly interviews in Diepsloot (Gauteng), Langa (Western Cape) and Lugangeni (Eastern Cape). In total, 160 households were involved in this pioneering study which promises to offer important insights into how poor people manage their money as well as the context in which poor people make financial decisions. The study paints a rich picture of the texture of financial markets in townships, highlighting the prevalence of informal financial products, the role of survivalist business and the contribution made by social grants. The Financial Diaries dataset includes highly detailed, daily cash flow data on income, expenditure and financial flows on both a household and individual basis.
The purpose of the survey was to collect hard statistical information about the conditions under which South Africans live in order to provide policy makers with the data required for planning strategies to implement such goals as those outlines in the Government of National Unity's Reconciliation and Development Programme (RDP) (1993 codebook). An important adjunct of apartheid has been the absence of credible and comprehensive data on which policy, such as poverty reduction strategies, can be grounded. The previous regime had little interest in collection information of this nature and, indeed, often surpassed data that depicted conditions in the former bantustan areas. This automatically excluded a large proportion of the poor from official statistics. It was not until the 1993 Project for Statistics on Living Standards and Development (PSLSD) that a comprehensive household database for development was created. Despite its usefulness, a cross-sectional study such as the PSLSD is unable to address a variety of questions, particularly those concerning dynamic processes, important to policy researchers and practitioners. KIDS 1993 - 1998 is a new longitudinal household survey based on the PSLSD that begins to fill this gap.
This dataset comprises interviews conducted between 2016 and 2018 with health service users, health professionals and health system managers in the Municipality of São Paulo, Brazil. The interviews focused in particular on the primary health care services covering two of the poorest sub-municipal districts, Cidade Tiradentes and Sapopemba. The Unequal Voices project – Vozes Desiguais in Portuguese – aimed to strengthen the evidence base on the politics of accountability for health equity via multi-level case studies of health systems in Brazil and Mozambique. The project examined the trajectories of change in the political context and in patterns of health inequalities in Brazil and Mozambique, and carried out four case studies to compare the operation of different accountability regimes across the two countries and between different areas within each country. The case studies tracked shifts in accountability relationships among managers, providers and citizens and changes in health system performance, in order to arrive at a better understanding of what works for different poor and marginalised groups in different contexts. In each country the research team studied one urban location with competitive politics and a high level of economic inequality and one rural location where the population as a whole has been politically marginalised and under-provided with services. Health inequities - that is, inequalities in health which result from social, economic or political factors and unfairly disadvantage the poor and marginalised - are trapping millions of people in poverty. Unless they are tackled, the effort to fulfill the promise of universal health coverage as part of the fairer world envisaged in the post-2015 Sustainable Development Goals may lead to more waste and unfairness, because new health services and resources will fail to reach the people who need them most. In Mozambique, for example, the gap in infant mortality between the best-performing and worst-performing areas actually increased between 1997 and 2008, despite improvements in health indicators for the country as a whole. However, while many low- and middle-income countries are failing to translate economic growth into better health services for the poorest, some - including Brazil - stand out as having taken determined and effective action. One key factor that differentiates a strong performer like Brazil from a relatively weak performer like Mozambique is accountability politics: the formal and informal relationships of oversight and control that ensure that health system managers and service providers deliver for the poorest rather than excluding them. Since the mid-1990s, Brazil has transformed health policy to try to ensure that the poorest people and places are covered by basic services. This shift was driven by many factors: by a strong social movement calling for the right to health; by political competition as politicians realised that improving health care for the poor won them votes; by changes to health service contracting that changed the incentives for local governments and other providers to ensure that services reached the poor; and by mass participation that ensured citizen voice in decisions on health priority-setting and citizen oversight of services. However, these factors did not work equally well for all groups of citizens, and some - notably the country's indigenous peoples - continue to lag behind the population as a whole in terms of improved health outcomes. This project is designed to address the ESRC-DFID call's key cross-cutting issue of structural inequalities, and its core research question "what political and institutional conditions are associated with effective poverty reduction and development, and what can domestic and external actors do to promote these conditions?", by comparing the dimensions of accountability politics across Brazil and Mozambique and between different areas within each country. As Mozambique and Brazil seek to implement similar policies to improve service delivery, in each country the research team will examine one urban location with competitive politics and a high level of economic inequality and one rural location where the population as a whole has been politically marginalised and under-provided with services, looking at changes in power relationships among managers, providers and citizens and at changes in health system performance, in order to arrive at a better understanding of what works for different poor and marginalised groups in different contexts. As two Portuguese-speaking countries that have increasingly close economic, political and policy links, Brazil and Mozambique are also well-placed to benefit from exchanges of experience and mutual learning of the kind that Brazil is seeking to promote through its South-South Cooperation programmes. The project will support this mutual learning process by working closely with Brazilian and Mozambican organisations that are engaged in efforts to promote social accountability through the use of community scorecards and through strengthening health oversight committees, and link these efforts with wider networks working on participation and health equity across Southern Africa and beyond. This dataset comprises interviews conducted between 2016 and 2018 with health service users, health professionals and health system managers in the Municipality of São Paulo, Brazil. Interviewee sampling was purposive and made use of snowballing. The interviews focused in particular on the primary health care services covering two of the poorest suprefeituras (sub-municipal districts), Cidade Tiradentes and Sapopemba. The dataset includes a mix of transcripts and summary notes from individual and group interviews. All material is in Portuguese.
This dataset comprises interviews conducted between 2016 and 2018 with health service users, health professionals and health system managers in Maputo, Mozambique. The Unequal Voices project – Vozes Desiguais in Portuguese – aimed to strengthen the evidence base on the politics of accountability for health equity via multi-level case studies of health systems in Brazil and Mozambique. The project conducted examined the trajectories of change in the political context and in patterns of health inequalities in Brazil and Mozambique, and carried out four cases studies to compare the operation of different accountability regimes across the two countries and between different areas within each country. The case studies tracked shifts in accountability relationships among managers, providers and citizens and changes in health system performance, in order to arrive at a better understanding of what works for different poor and marginalised groups in different contexts. In each country the research team studied one urban location with competitive politics and a high level of economic inequality and one rural location where the population as a whole has been politically marginalised and under-provided with services.Health inequities - that is, inequalities in health which result from social, economic or political factors and unfairly disadvantage the poor and marginalised - are trapping millions of people in poverty. Unless they are tackled, the effort to fulfill the promise of universal health coverage as part of the fairer world envisaged in the post-2015 Sustainable Development Goals may lead to more waste and unfairness, because new health services and resources will fail to reach the people who need them most. In Mozambique, for example, the gap in infant mortality between the best-performing and worst-performing areas actually increased between 1997 and 2008, despite improvements in health indicators for the country as a whole. However, while many low- and middle-income countries are failing to translate economic growth into better health services for the poorest, some - including Brazil - stand out as having taken determined and effective action. One key factor that differentiates a strong performer like Brazil from a relatively weak performer like Mozambique is accountability politics: the formal and informal relationships of oversight and control that ensure that health system managers and service providers deliver for the poorest rather than excluding them. Since the mid-1990s, Brazil has transformed health policy to try to ensure that the poorest people and places are covered by basic services. This shift was driven by many factors: by a strong social movement calling for the right to health; by political competition as politicians realised that improving health care for the poor won them votes; by changes to health service contracting that changed the incentives for local governments and other providers to ensure that services reached the poor; and by mass participation that ensured citizen voice in decisions on health priority-setting and citizen oversight of services. However, these factors did not work equally well for all groups of citizens, and some - notably the country's indigenous peoples - continue to lag behind the population as a whole in terms of improved health outcomes. This project is designed to address the ESRC-DFID call's key cross-cutting issue of structural inequalities, and its core research question "what political and institutional conditions are associated with effective poverty reduction and development, and what can domestic and external actors do to promote these conditions?", by comparing the dimensions of accountability politics across Brazil and Mozambique and between different areas within each country. As Mozambique and Brazil seek to implement similar policies to improve service delivery, in each country the research team will examine one urban location with competitive politics and a high level of economic inequality and one rural location where the population as a whole has been politically marginalised and under-provided with services, looking at changes in power relationships among managers, providers and citizens and at changes in health system performance, in order to arrive at a better understanding of what works for different poor and marginalised groups in different contexts. As two Portuguese-speaking countries that have increasingly close economic, political and policy links, Brazil and Mozambique are also well-placed to benefit from exchanges of experience and mutual learning of the kind that Brazil is seeking to promote through its South-South Cooperation programmes. The project will support this mutual learning process by working closely with Brazilian and Mozambican organisations that are engaged in efforts to promote social accountability through the use of community scorecards and through strengthening health oversight committees, and link these efforts with wider networks working on participation and health equity across Southern Africa and beyond. This dataset comprises interviews conducted between 2016 and 2018 with health service users, health professionals and health system managers in Maputo, Mozambique. Interviewee sampling was purposive and made use of snowballing. The interviewers were part of an N’weti/Kula research team coordinated by Denise Namburete (N’weti) and Cristiano Matsinhe (Kula). The collection includes a mix of transcripts and summary notes from individual and group interviews. All material are in Portuguese.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset, released in August 2017, contains the Australian residents population by their birthplace divided into English speaking (ES) and non-English speaking (NES) countries, 2016. The following countries are designated as ES: Canada, Ireland, New Zealand, South Africa, United Kingdom and the United States of America; the remaining countries are designated as NES. The dataset also includes the population of people born overseas and report poor proficiency in English. The data is by Local Government Area (LGA) 2016 geographic boundaries. For more information please see the data source notes on the data. Source: Compiled by PHIDU based on the ABS Census of Population and Housing, August 2016. AURIN has spatially enabled the original data. Data that was not shown/not applicable/not published/not available for the specific area ('#', '..', '^', 'np, 'n.a.', 'n.y.a.' in original PHIDU data) was removed.It has been replaced by by Blank cells. For other keys and abbreviations refer to PHIDU Keys.
This dataset comprises interviews conducted between 2016 and 2018 with health service users, health professionals and health system managers in the Rio Negro Indigenous Health District, Amazonas State, Brazil. It focuses in particular on the primary health care services covering approximately 30 communities in the Middle Tiquié region. The Unequal Voices project – Vozes Desiguais in Portuguese – aimed to strengthen the evidence base on the politics of accountability for health equity via multi-level case studies of health systems in Brazil and Mozambique. The project conducted examined the trajectories of change in the political context and in patterns of health inequalities in Brazil and Mozambique, and carried out four cases studies to compare the operation of different accountability regimes across the two countries and between different areas within each country. The case studies tracked shifts in accountability relationships among managers, providers and citizens and changes in health system performance, in order to arrive at a better understanding of what works for different poor and marginalised groups in different contexts. In each country the research team studied one urban location with competitive politics and a high level of economic inequality and one rural location where the population as a whole has been politically marginalised and under-provided with services.Health inequities - that is, inequalities in health which result from social, economic or political factors and unfairly disadvantage the poor and marginalised - are trapping millions of people in poverty. Unless they are tackled, the effort to fulfill the promise of universal health coverage as part of the fairer world envisaged in the post-2015 Sustainable Development Goals may lead to more waste and unfairness, because new health services and resources will fail to reach the people who need them most. In Mozambique, for example, the gap in infant mortality between the best-performing and worst-performing areas actually increased between 1997 and 2008, despite improvements in health indicators for the country as a whole. However, while many low- and middle-income countries are failing to translate economic growth into better health services for the poorest, some - including Brazil - stand out as having taken determined and effective action. One key factor that differentiates a strong performer like Brazil from a relatively weak performer like Mozambique is accountability politics: the formal and informal relationships of oversight and control that ensure that health system managers and service providers deliver for the poorest rather than excluding them. Since the mid-1990s, Brazil has transformed health policy to try to ensure that the poorest people and places are covered by basic services. This shift was driven by many factors: by a strong social movement calling for the right to health; by political competition as politicians realised that improving health care for the poor won them votes; by changes to health service contracting that changed the incentives for local governments and other providers to ensure that services reached the poor; and by mass participation that ensured citizen voice in decisions on health priority-setting and citizen oversight of services. However, these factors did not work equally well for all groups of citizens, and some - notably the country's indigenous peoples - continue to lag behind the population as a whole in terms of improved health outcomes. This project is designed to address the ESRC-DFID call's key cross-cutting issue of structural inequalities, and its core research question "what political and institutional conditions are associated with effective poverty reduction and development, and what can domestic and external actors do to promote these conditions?", by comparing the dimensions of accountability politics across Brazil and Mozambique and between different areas within each country. As Mozambique and Brazil seek to implement similar policies to improve service delivery, in each country the research team will examine one urban location with competitive politics and a high level of economic inequality and one rural location where the population as a whole has been politically marginalised and under-provided with services, looking at changes in power relationships among managers, providers and citizens and at changes in health system performance, in order to arrive at a better understanding of what works for different poor and marginalised groups in different contexts. As two Portuguese-speaking countries that have increasingly close economic, political and policy links, Brazil and Mozambique are also well-placed to benefit from exchanges of experience and mutual learning of the kind that Brazil is seeking to promote through its South-South Cooperation programmes. The project will support this mutual learning process by working closely with Brazilian and Mozambican organisations that are engaged in efforts to promote social accountability through the use of community scorecards and through strengthening health oversight committees, and link these efforts with wider networks working on participation and health equity across Southern Africa and beyond. This dataset comprises interviews conducted between 2016 and 2018 with health service users, indigenous leaders, health professionals and health system managers in the Rio Negro Indigenous Health District, Amazonas State, Brazil. It focuses in particular on the primary health care services covering approximately 30 communities in the Middle Tiquié region, and on the process of indigenous political mobilisation to secure accountability for inadequate state response to a malaria outbreak in the region. Interviewee sampling was purposive and made use of snowballing. The collections includes a mix of transcripts and summary notes from individual and group interviews. All material are in Portuguese.
The State of Giving project, established by the Centre for Civil Society (CCS) at the University of KwaZulu-Natal (UKZN), the Southern African Grantmakers’ Association (SAGA) and the National Development Agency (NDA), was initiated to generate information on and analyse the resource flows to poverty alleviation and development in South Africa. One component of the broader project was a focus on individual-level giving, which involved the design, implementation and analysis of a national sample survey on individual level giving behaviour. The sample, a random stratified one comprising 3000 respondents, is representative of all South Africans aged 18 and above. It thus speaks to both the urban and rural and the formal and informal dimensions of our social context. The survey collected data on who gives, why and how much they give, as well as what they give and the recipients of their giving.
National coverage
Units of analysis in the survey were households and individuals
The population of interest in the survey was all South Africans aged 18 and above.
Sample survey data [ssd]
A random stratified survey sample was drawn by Ross Jennings at S&T. The sample was stratified by race and province at the first level, and then by area (rural/urban/etc.) at the second level. The sample frame comprised 3000 respondents, yielding an error bar of 1.8%. The results are representative of all South Africans aged 18 and above, in all parts of the country, including formal and informal dwellings. Unlike many surveys, the project partners ensured that the rural component of the sample (commonly the most expensive for logistical reasons) was large and did not require heavy weighting (where a small number of respondents have to represent the views of a far larger community).
Randomness was built into the selection of starting points (from which fieldworkers begin their work) - every 5th dwelling was selected, after a randomly selected starting point had been identified - and into the selection of respondents, where the birthday rule was applied. That is, a household roster was completed, all those aged 18 and above were listed, and the householder whose birthday came next was identified as the respondent. Three call-backs were undertaken to interview the selected respondent; if s/he was unavailable, the household was substituted.
A second sample was drawn, specifically to boost the minority religious groups – namely Hindus, Jews and Muslims. They are separately analysed and reported as part of the broader project, since area sampling was used, disallowing us from incorporating them into the national survey dataset.
Face-to-face [f2f]
A set of focus groups were staged across the country in order to inform questionnaire design. Groups were recruited across a range of criteria, including demographic and religious differences, in order to ensure a wide range of views were canvassed. Direct input from focus group participants informed a series of robust design sessions with all the project partners, from which a draft questionnaire was designed. The questionnaire was piloted in two provinces, involving urban and rural respondents and covering all four race groups. The pilot included testing specific questions, and the overall methodological approach, namely our ability to quantify giving. After the pilot results had been assessed, the questionnaire was revised before going into field.
"0" values in some variables Many of the variables have a "0" value in addition to the values for responses, e.g. variables with yes/no responses are coded "0" "1""2". There is no indication that the 0 represents "missing" (only Q75 specifies the use of "0" for none/nobody).
Variable Q9 (Question 9) Q8 lists the number of resident children under the age of 18. Q9 refers to this question with: "of these children aged below 16 living in your household". This should probably be "aged below 18", in line with Q8 The data only reflects children under 16, so the question should probably have been "of these children, how many below the age of 16 are (Q9A) children of the head of the household and (Q9B) children not born to the head of household, i.e. children born to others. It seems though, that Q8 and Q9 should match, with Q8 identifying children and Q9 identifying children of the household head. If specifying 16 rather than 18 in Q9 is an error, then this has been reflected in the data. This means that household members 17-18 years are listed, but the data does not record whether they are children of the household head.
Variable Q21 (Question 21) "What do you think is the most deserving cause that you support or would support if you could?" There are 14 values for Q21 (1-14).According to the report (Everatt, D. and G. Solanki. 2005. A Nation of givers: Social giving amongst South Africans) this and other open-ended questions were later categorised and given numeric codes. However, a codebook was not included with the documentation provided to DataFirst
Variable Q22 (Question 22) "Is there one cause or charity or organisation you would definitely NOT give money to?" There are 14 values for Q22 (1-14). Again, this requires a code list for explanation.
Variable Q29 (Question 29) Q28 deals with the giving of goods/food/clothes. Q29 provides a breakdown of these items, and Q28Q29L lists time/labour as one of these. It seems that Q29L is incorrectly listed as a sub-set of goods/food/clothes. Also, giving time to causes is dealt with extensively in Q30A-Q and Q31A-Q, so this variable seems out of place.
Variable Q39 (Question 36) This concerns the giving of food, goods, or other forms of help to beggars/street children/people asking for help, but the question text does not specifically mention these forms of help, so can be misleading.
Variable Q44 (Question 44) Q44 asks the respondent to complete the sentence "Help the poor because…." There are 8 values for this variable (0-7 and 11). Again, a code list is required to explain these values.
Variable Q59 (Question 59) This question has three coded responses (1-3) so should have three values (or 4, with a "missing" value). There are 12 values for this variable, though (59A-59L). It is possible that this variable has been swopped with Q60 (However, Q60 only has 11 options in the questionnaire)
Variable Q60 (Question 60) The variable from this question only has 4 values, but there are 11 possible responses to this question (60A-60K). This variable could have been swopped with Q59 (In which case, the extra value needs explanation, as Q59 only has 11 options in the questionnaire.
Variables Q67 - Q82 From this point on the order of variables seems wrong, as the responses don't match the number of values listed in the questionnaire. The variables seem to refer to the next question along, e.g. Variable Q67 seems to have data emanating from Question 68, and so on. The data in the revised dataset has been corrected to reflect this.
There is no variable Q83 in the dataset, although there is a question 83 in the questionnaire. This seems to support the above explanation. Data users are requested to provide any additional findings on this that come to light in their research.
https://datacatalog.worldbank.org/public-licenses?fragment=researchhttps://datacatalog.worldbank.org/public-licenses?fragment=research
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.