Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Rich Square. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Rich Square population by race & ethnicity, the population is predominantly Black or African American. This particular racial category constitutes the majority, accounting for 63.98% of the total residents in Rich Square. Notably, the median household income for Black or African American households is $34,031. Interestingly, Black or African American is both the largest group and the one with the highest median household income, which stands at $34,031.
https://i.neilsberg.com/ch/rich-square-nc-median-household-income-by-race.jpeg" alt="Rich Square median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Square median household income by race. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01134) from Q3 1989 to Q3 2024 about net worth, wealth, percentile, Net, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Rich County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Rich County, the median income for all workers aged 15 years and older, regardless of work hours, was $45,000 for males and $22,645 for females.
These income figures highlight a substantial gender-based income gap in Rich County. Women, regardless of work hours, earn 50 cents for each dollar earned by men. This significant gender pay gap, approximately 50%, underscores concerning gender-based income inequality in the county of Rich County.
- Full-time workers, aged 15 years and older: In Rich County, among full-time, year-round workers aged 15 years and older, males earned a median income of $72,653, while females earned $35,278, leading to a 51% gender pay gap among full-time workers. This illustrates that women earn 49 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Rich County, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich County median household income by race. You can refer the same here
The Wealth and Assets Survey (WAS) is a longitudinal survey, which aims to address gaps identified in data about the economic well-being of households by gathering information on level of assets, savings and debt; saving for retirement; how wealth is distributed among households or individuals; and factors that affect financial planning. Private households in Great Britain were sampled for the survey (meaning that people in residential institutions, such as retirement homes, nursing homes, prisons, barracks or university halls of residence, and also homeless people were not included).
The WAS commenced in July 2006, with a first wave of interviews carried out over two years, to June 2008. Interviews were achieved with 30,595 households at Wave 1. Those households were approached again for a Wave 2 interview between July 2008 and June 2010, and 20,170 households took part. Wave 3 covered July 2010 - June 2012, Wave 4 covered July 2012 - June 2014 and Wave 5 covered July 2014 - June 2016. Revisions to previous waves' data mean that small differences may occur between originally published estimates and estimates from the datasets held by the UK Data Service. These revisions are due to improvements in the imputation methodology.
Note from the WAS team - November 2023:
"The Office for National Statistics has identified a very small number of outlier cases present in the seventh round of the Wealth and Assets Survey covering the period April 2018 to March 2020. Our current approach is to treat cases where we have reasonable evidence to suggest the values provided for specific variables are outliers. This approach did not occur for two individuals for several variables involved in the estimation of their pension wealth. While we estimate any impacts are very small overall and median pension wealth and median total wealth estimates are unaffected, this will affect the accuracy of the breakdowns of the pension wealth within the wealthiest decile, and data derived from them. We are urging caution in the interpretation of more detailed estimates."
Survey Periodicity - "Waves" to "Rounds"
Due to the survey periodicity moving from "Waves" (July, ending in June two years later) to “Rounds” (April, ending in March two years later), interviews using the ‘Wave 6’ questionnaire started in July 2016 and were conducted for 21 months, finishing in March 2018. Data for round 6 covers the period April 2016 to March 2018. This comprises of the last three months of Wave 5 (April to June 2016) and 21 months of Wave 6 (July 2016 to March 2018). Round 5 and Round 6 datasets are based on a mixture of original wave-based datasets. Each wave of the survey has a unique questionnaire and therefore each of these round-based datasets are based on two questionnaires. While there may be some changes in the questionnaires, the derived variables for the key wealth estimates have not changed over this period. The aim is to collect the same data, though in some cases the exact questions asked may differ slightly. Detailed information on Moving the Wealth and Assets Survey onto a financial years’ basis was published on the ONS website in July 2019.
Further information and documentation may be found on the ONS Wealth and Assets Survey webpage. Users are advised to the check the page for updates before commencing analysis.
Users should note that issues with linking have been reported and the WAS team are currently investigating.
Secure Access WAS data
The Secure Access version of the WAS includes additional, detailed geographical variables not included in the End User Licence (EUL) version (SN 7215). These include:
This dataset was created by Ravi_kr
This data collection consists of 18 interview transcripts meant to explore the rationales and methods by which investors in Hong Kong buy properties in the UK. The life and impact of the residential choices of the 'super rich' has been a major strand in research by the research team. This work advanced the proposition that the upper-tier of income groups living in cities tend to exploit particular forms of service provision (such as education, cultural life and personal services), are largely distanced from the mundane flow of social life in urban areas and tend to be withdrawn from the civic life of cities more generally. Some of this work is underpinned by the literature on, for example, gated communities, but it has surprisingly been under-used as the guiding framework for close empirical work in affluent neighbourhoods, perhaps largely as a result of the perceived difficulty of working with such individuals. This project will allow us to generate insights into how super-rich neighbourhoods operate, how people come to live there and the social and economic tensions and trade-offs that exist as such processes are allowed to run. As many people question the role and value of wealth and identify inequality as a growing social problem this research will feed into public conversations and policymaker concerns about how socially vital cities can be maintained when capital investment may undermine such objectives on one level (the creation of neighbourhoods that are both exclusive and often 'abandoned' for large parts of the year), while potentially fulfilling broader ambitions at others (over tax receipts for example).Social research has tended not to focus on the super-rich, largely because they are hard to locate, and even harder to collaborate with in research. In this project we seek to address these concerns by focusing extensive research effort on the question of where and how the super-rich live and invest in the property markets of the cities of Hong Kong and London. We see these cities as exemplary in assisting in the construction of further insights and knowledge in how the super-rich seek residential investment opportunities, how they live there when they are 'at home' in such residences and how these patterns of investment shape the social, political and economic life of these cities more broadly. Given that the super-rich make such decisions on the basis of tax incentives and the attraction of major cultural infrastructure (such as galleries and theatre) we have proposed a program of research capable of offering an inside account of the practices that go to make-up these investment patterns including processes of searching for suitable property, its financing, the kinds of property deemed to be suitable and an analysis of how estate agents and city authorities seek to capitalise and retain the potentially highly mobile investment by the super-rich. In economic terms the life and functioning of rich neighbourhood spaces appears intuitively important. For example, attractive and safe spaces for captains of industry, senior figures in political and non-government organizations are often regarded as major markers of urban vitality and the foundation of social networks that may make-up the broader glue of civic and political society. Yet we know very little about how such neighbourhoods operate, who they attract and how they are linked to other cities and their neighbourhoods globally. Our aim in this research is to grapple with what might be described as the 'problem' of these super-rich neighbourhoods - sometime called the 'alpha territory' - and undertake research that will help us to understand more about the advantages and disadvantages of these kinds of property investment. The research was carried out using semi-structured interviews and participant observation at property fairs and development sites in Hong Kong and different cities in the UK. Moreover, semi-structured interviews were conducted to explore the rationales and methods by which investors in Hong Kong buy properties in the UK. Participants were recruited using searches for relevant key actors as well as accessing personal and professional networks that enabled snowballing techniques to elicit further contacts. Interviews were conducted with individual investors, local government officials, planning officers, inward investment agencies, city government officials and estate agents. Interviews were conducted in both English and Cantonese.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table shows statistics about inherited wealth of deceased people.
The inheritances are made up for all people died, registered from the Dutch population register on January 1st.
Because of the revision of the income statistics, there are differences between 2010 and 2011. From 2007 until 2010 background characteristics of persons represent the situation on the 31st of December in that year. From 2011 onwards characteristics represent the situation on the 1st of January of the given year.
Data available from: 2007.
Status of the figures: The figures for 2007 to 2020 are final. The figures for 2021 are preliminary.
Changes as of November 2024: Figures for 2020 are finalized.
When will new figures be published? New figures will be published in the first quarter of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Rich Creek. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Rich Creek, the median income for all workers aged 15 years and older, regardless of work hours, was $42,578 for males and $30,625 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 28% between the median incomes of males and females in Rich Creek. With women, regardless of work hours, earning 72 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Rich Creek.
- Full-time workers, aged 15 years and older: In Rich Creek, among full-time, year-round workers aged 15 years and older, males earned a median income of $55,938, while females earned $58,523Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.05 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Creek median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains statistics regarding income and capital of self-employed persons in the Netherlands. A distinction is made between, on the one hand, persons for whom self-employment provides for the main source of income, and on the other hand all persons with income from self-employed work. The figures in this table are broken down by type of self-employed person, sector, gender, age, migration background, position in the household, and by income and wealth decile groups.
All statistics in this table are at the individual level, this includes capital; (corporate) assets are summed per household and then assigned to all household members, thus serving as a measure of personal prosperity. The sample date for both population and capital is the first of January of the reporting year. For the older years 2007 up to and including 2010, capital is sampled on the first of January of the year following the reporting year.
The General Business Register (ABR) is used to determine the sector (SBI) of self-employed persons. The ABR has been subject to various trend breaks in the period 2007-2011. This leads to a sharp decrease in the number of self-employed persons in the financial services (sector K) in 2010. Therefore caution is advised when consulting sector trends or comparing numbers across sectors.
Data available from: 2007.
Status of the figures: The figures for 2006 to 2022 are final. The figures for 2023 are preliminary.
Changes as of November 1 2024: Figures for 2022 have been finalized. Figures for 2023 have been added.
Changes as of March 2022: Figures on the wealth of the self-employed in 2010 were incorrect, and have been removed. For this year the wealth of 2011 applies, as 2011 marks a shift in sample date from December 31 to January 1. Missing wealth figures for 2013 have been supplemented.
Changes as of July 2021: Revised data for 2006 to 2019 have been added. Due to the availability of new sources and improvements in the methodology, wealth figures have changed. Additionally everyone with personnel is now classified as self-employed with employee (formerly this distinction was based solely on the enterprise constituting the main source of income).
When will new figures be published? New figures for 2024 will be published in December 2025.
Patterns of educational attainment vary greatly across countries, and across population groups within countries. In some countries, virtually all children complete basic education whereas in others large groups fall short. The primary purpose of this database, and the associated research program, is to document and analyze these differences using a compilation of a variety of household-based data sets: Demographic and Health Surveys (DHS); Multiple Indicator Cluster Surveys (MICS); Living Standards Measurement Study Surveys (LSMS); as well as country-specific Integrated Household Surveys (IHS) such as Socio-Economic Surveys.As shown at the website associated with this database, there are dramatic differences in attainment by wealth. When households are ranked according to their wealth status (or more precisely, a proxy based on the assets owned by members of the household) there are striking differences in the attainment patterns of children from the richest 20 percent compared to the poorest 20 percent.In Mali in 2012 only 34 percent of 15 to 19 year olds in the poorest quintile have completed grade 1 whereas 80 percent of the richest quintile have done so. In many countries, for example Pakistan, Peru and Indonesia, almost all the children from the wealthiest households have completed at least one year of schooling. In some countries, like Mali and Pakistan, wealth gaps are evident from grade 1 on, in other countries, like Peru and Indonesia, wealth gaps emerge later in the school system.The EdAttain website allows a visual exploration of gaps in attainment and enrollment within and across countries, based on the international database which spans multiple years from over 120 countries and includes indicators disaggregated by wealth, gender and urban/rural location. The database underlying that site can be downloaded from here.
Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata: This data product is a unique offering in the realm of AI/ML training data. What sets it apart is the sheer volume and diversity of the dataset, which includes 4.5 million files spanning across 20 different categories. These categories range from Animals/Wildlife and The Arts to Technology and Transportation, providing a rich and varied dataset for AI/ML applications.
The data is sourced from Wirestock's platform, where creators upload and sell their photos, videos, and AI art online. This means that the data is not only vast but also constantly updated, ensuring a fresh and relevant dataset for your AI/ML needs. The data is collected in a GDPR-compliant manner, ensuring the privacy and rights of the creators are respected.
The primary use-cases for this data product are numerous. It is ideal for training machine learning models for image recognition, improving computer vision algorithms, and enhancing AI applications in various industries such as retail, healthcare, and transportation. The diversity of the dataset also means it can be used for more niche applications, such as training AI to recognize specific objects or scenes.
This data product fits into Wirestock's broader data offering as a key resource for AI/ML training. Wirestock is a platform for creators to sell their work, and this dataset is a collection of that work. It represents the breadth and depth of content available on Wirestock, making it a valuable resource for any company working with AI/ML.
The core benefits of this dataset are its volume, diversity, and quality. With 4.5 million files, it provides a vast resource for AI training. The diversity of the dataset, spanning 20 categories, ensures a wide range of images for training purposes. The quality of the images is also high, as they are sourced from creators selling their work on Wirestock.
In terms of how the data is collected, creators upload their work to Wirestock, where it is then sold on various marketplaces. This means the data is sourced directly from creators, ensuring a diverse and unique dataset. The data includes both the images themselves and associated metadata, providing additional context for each image.
The different image categories included in this dataset are Animals/Wildlife, The Arts, Backgrounds/Textures, Beauty/Fashion, Buildings/Landmarks, Business/Finance, Celebrities, Education, Emotions, Food Drinks, Holidays, Industrial, Interiors, Nature Parks/Outdoor, People, Religion, Science, Signs/Symbols, Sports/Recreation, Technology, Transportation, Vintage, Healthcare/Medical, Objects, and Miscellaneous. This wide range of categories ensures a diverse dataset that can cater to a variety of AI/ML applications.
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
Welcome to the Portuguese Chain of Thought prompt-response dataset, a meticulously curated collection containing 3000 comprehensive prompt and response pairs. This dataset is an invaluable resource for training Language Models (LMs) to generate well-reasoned answers and minimize inaccuracies. Its primary utility lies in enhancing LLMs' reasoning skills for solving arithmetic, common sense, symbolic reasoning, and complex problems. Dataset Content: This COT dataset comprises a diverse set of instructions and questions paired with corresponding answers and rationales in the Portuguese language. These prompts and completions cover a broad range of topics and questions, including mathematical concepts, common sense reasoning, complex problem-solving, scientific inquiries, puzzles, and more. Each prompt is meticulously accompanied by a response and rationale, providing essential information and insights to enhance the language model training process. These prompts, completions, and rationales were manually curated by native Portuguese people, drawing references from various sources, including open-source datasets, news articles, websites, and other reliable references. Our chain-of-thought prompt-completion dataset includes various prompt types, such as instructional prompts, continuations, and in-context learning (zero-shot, few-shot) prompts. Additionally, the dataset contains prompts and completions enriched with various forms of rich text, such as lists, tables, code snippets, JSON, and more, with proper markdown format. Prompt Diversity: To ensure a wide-ranging dataset, we have included prompts from a plethora of topics related to mathematics, common sense reasoning, and symbolic reasoning. These topics encompass arithmetic, percentages, ratios, geometry, analogies, spatial reasoning, temporal reasoning, logic puzzles, patterns, and sequences, among others. These prompts vary in complexity, spanning easy, medium, and hard levels. Various question types are included, such as multiple-choice, direct queries, and true/false assessments. Response Formats: To accommodate diverse learning experiences, our dataset incorporates different types of answers depending on the prompt and provides step-by-step rationales. The detailed rationale aids the language model in building reasoning process for complex questions. These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers. Data Format and Annotation Details: This fully labeled Portuguese Chain of Thought Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt complexity, prompt category, domain, response, rationale, response type, and rich text presence. Quality and Accuracy: Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses and rationales are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance. The Portuguese version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset. Continuous Updates and Customization: The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom chain of thought prompt completion data tailored to specific needs, providing flexibility and customization options. License: The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Portuguese Chain of Thought Prompt Completion Dataset to enhance the rationale and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.
https://ega-archive.org/dacs/EGAC00001003435https://ega-archive.org/dacs/EGAC00001003435
We generated a dataset consisting of 79 VCF files, and respective FASTQ and CRAM files, methodically generated using the GLIMPSE1 imputation algorithm leveraging the 1000 Genomes Project Phase 3 dataset as the reference panel of haplotypes. In total this dataset is composed of approximately 325 GB of FASTQ data, 156 GB of CRAM data, and 6 GB of VCF data. Our samples were specifically derived from sequenced DNA from a highly selective cohort of patients, mostly comprised of Iberian Populations in Spain (IBS) individuals but also containing some individuals with other genetic backgrounds, who presented severe COVID-19 symptoms during the initial wave of the SARS-CoV-2 pandemic in Madrid, Spain. On average, each VCF file in this rich dataset contains 9.49 million high-confidence single nucleotide variants [95%CI: 9.37 million - 9.61 million].
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The values of any financial assets held including both formal investments, such as bank or building society current or saving accounts, investment vehicles such as Individual Savings Accounts, endowments, stocks and shares, and informal savings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Rich Valley township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Rich Valley township, the median income for all workers aged 15 years and older, regardless of work hours, was $54,375 for males and $38,750 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 29% between the median incomes of males and females in Rich Valley township. With women, regardless of work hours, earning 71 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetownship of Rich Valley township.
- Full-time workers, aged 15 years and older: In Rich Valley township, among full-time, year-round workers aged 15 years and older, males earned a median income of $71,875, while females earned $56,964, leading to a 21% gender pay gap among full-time workers. This illustrates that women earn 79 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Rich Valley township, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Valley township median household income by race. You can refer the same here
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
Welcome to the Hindi Chain of Thought prompt-response dataset, a meticulously curated collection containing 3000 comprehensive prompt and response pairs. This dataset is an invaluable resource for training Language Models (LMs) to generate well-reasoned answers and minimize inaccuracies. Its primary utility lies in enhancing LLMs' reasoning skills for solving arithmetic, common sense, symbolic reasoning, and complex problems. Dataset Content: This COT dataset comprises a diverse set of instructions and questions paired with corresponding answers and rationales in the Hindi language. These prompts and completions cover a broad range of topics and questions, including mathematical concepts, common sense reasoning, complex problem-solving, scientific inquiries, puzzles, and more. Each prompt is meticulously accompanied by a response and rationale, providing essential information and insights to enhance the language model training process. These prompts, completions, and rationales were manually curated by native Hindi people, drawing references from various sources, including open-source datasets, news articles, websites, and other reliable references. Our chain-of-thought prompt-completion dataset includes various prompt types, such as instructional prompts, continuations, and in-context learning (zero-shot, few-shot) prompts. Additionally, the dataset contains prompts and completions enriched with various forms of rich text, such as lists, tables, code snippets, JSON, and more, with proper markdown format. Prompt Diversity: To ensure a wide-ranging dataset, we have included prompts from a plethora of topics related to mathematics, common sense reasoning, and symbolic reasoning. These topics encompass arithmetic, percentages, ratios, geometry, analogies, spatial reasoning, temporal reasoning, logic puzzles, patterns, and sequences, among others. These prompts vary in complexity, spanning easy, medium, and hard levels. Various question types are included, such as multiple-choice, direct queries, and true/false assessments. Response Formats: To accommodate diverse learning experiences, our dataset incorporates different types of answers depending on the prompt and provides step-by-step rationales. The detailed rationale aids the language model in building reasoning process for complex questions. These responses encompass text strings, numerical values, and date and time formats, enhancing the language model's ability to generate reliable, coherent, and contextually appropriate answers. Data Format and Annotation Details: This fully labeled Hindi Chain of Thought Prompt Completion Dataset is available in JSON and CSV formats. It includes annotation details such as a unique ID, prompt, prompt type, prompt complexity, prompt category, domain, response, rationale, response type, and rich text presence. Quality and Accuracy: Our dataset upholds the highest standards of quality and accuracy. Each prompt undergoes meticulous validation, and the corresponding responses and rationales are thoroughly verified. We prioritize inclusivity, ensuring that the dataset incorporates prompts and completions representing diverse perspectives and writing styles, maintaining an unbiased and discrimination-free stance. The Hindi version is grammatically accurate without any spelling or grammatical errors. No copyrighted, toxic, or harmful content is used during the construction of this dataset. Continuous Updates and Customization: The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Ongoing efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to gather custom chain of thought prompt completion data tailored to specific needs, providing flexibility and customization options. License: The dataset, created by FutureBeeAI, is now available for commercial use. Researchers, data scientists, and developers can leverage this fully labeled and ready-to-deploy Hindi Chain of Thought Prompt Completion Dataset to enhance the rationale and accurate response generation capabilities of their generative AI models and explore new approaches to NLP tasks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book is The very, very rich and how they got that way : the spectacular success stories of 15 people who made it to the very, very top, featuring 7 columns including author, BNB id, book, book publisher, and ISBN. The preview is ordered by publication date (descending).
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The Filipino Closed-Ended Question Answering Dataset is a meticulously curated collection of 5000 comprehensive Question-Answer pairs. It serves as a valuable resource for training Large Language Models (LLMs) and question-answering models in the Filipino language, advancing the field of artificial intelligence.
Dataset Content: This closed-ended QA dataset comprises a diverse set of context paragraphs and questions paired with corresponding answers in Filipino. There is a context paragraph given for each question to get the answer from. The questions cover a broad range of topics, including science, history, technology, geography, literature, current affairs, and more.Each question is accompanied by an answer, providing valuable information and insights to enhance the language model training process. Both the questions and answers were manually curated by native Filipino people, and references were taken from diverse sources like books, news articles, websites, web forums, and other reliable references.
This question-answer prompt completion dataset contains different types of prompts, including instruction type, continuation type, and in-context learning (zero-shot, few-shot) type. The dataset also contains questions and answers with different types of rich text, including tables, code, JSON, etc., with proper markdown.
Question Diversity: To ensure diversity, this Q&A dataset includes questions with varying complexity levels, ranging from easy to medium and hard. Different types of questions, such as multiple-choice, direct, and true/false, are included. The QA dataset also contains questions with constraints, which makes it even more useful for LLM training.Answer Formats: To accommodate varied learning experiences, the dataset incorporates different types of answer formats. These formats include single-word, short phrases, single sentences, and paragraphs types of answers. The answers contain text strings, numerical values, date and time formats as well. Such diversity strengthens the language model's ability to generate coherent and contextually appropriate answers.Data Format and Annotation Details: This fully labeled Filipino Closed-Ended Question Answer Dataset is available in JSON and CSV formats. It includes annotation details such as a unique id, context paragraph, context reference link, question, question type, question complexity, question category, domain, prompt type, answer, answer type, and rich text presence.Quality and Accuracy: The dataset upholds the highest standards of quality and accuracy. Each question undergoes careful validation, and the corresponding answers are thoroughly verified. To prioritize inclusivity, the dataset incorporates questions and answers representing diverse perspectives and writing styles, ensuring it remains unbiased and avoids perpetuating discrimination.The Filipino versions is grammatically accurate without any spelling or grammatical errors. No toxic or harmful content is used while building this dataset.
Continuous Updates and Customization: The entire dataset was prepared with the assistance of human curators from the FutureBeeAI crowd community. Continuous efforts are made to add more assets to this dataset, ensuring its growth and relevance. Additionally, FutureBeeAI offers the ability to collect custom question-answer data tailored to specific needs, providing flexibility and customization options.License: The dataset, created by FutureBeeAI, is now ready for commercial use. Researchers, data scientists, and developers can utilize this fully labeled and ready-to-deploy Filipino Closed-Ended Question Answer Dataset to enhance the language understanding capabilities of their generative AI models, improve response generation, and explore new approaches to NLP question-answering tasks.Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Individual-level estimates of total wealth (July 2010 to March 2020) and regression estimates for the latest survey period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Rich Square. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Rich Square population by race & ethnicity, the population is predominantly Black or African American. This particular racial category constitutes the majority, accounting for 63.98% of the total residents in Rich Square. Notably, the median household income for Black or African American households is $34,031. Interestingly, Black or African American is both the largest group and the one with the highest median household income, which stands at $34,031.
https://i.neilsberg.com/ch/rich-square-nc-median-household-income-by-race.jpeg" alt="Rich Square median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rich Square median household income by race. You can refer the same here