100+ datasets found
  1. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  2. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. World cities database

    • kaggle.com
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juanma Hernández (2025). World cities database [Dataset]. http://doi.org/10.34740/kaggle/dsv/11944536
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juanma Hernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is from:

    https://simplemaps.com/data/world-cities

    We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.

    Our database is:

    • Up-to-date: It was last refreshed on May 11, 2025.
    • Comprehensive: Over 4 million unique cities and towns from every country in the world (about 48 thousand in basic database).
    • Accurate: Cleaned and aggregated from official sources. Includes latitude and longitude coordinates.
    • Simple: A single CSV file, concise field names, only one entry per city.
  4. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.

  5. Standard populations dataset

    • kaggle.com
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Kleine (2023). Standard populations dataset [Dataset]. https://www.kaggle.com/datasets/matthiaskleine/standard-populations-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Matthias Kleine
    Description

    Do you know further standard populations?

    If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.

    German "Federal Health Monitoring System" about 'standard populations':

    "Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).

    Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:

    Which standard population is used for comparison basically, does not matter. It is important, however, that

    1. the demographic structure of the standard population is not too dissimilar to that of the reference population and
    2. the comparable rates refer to the same standard."

    Aim of this dataset

    The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.

    Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System

    • standard_populations_19_age_groups.csv
      • 19 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85+'
      • 15 standard populations: '1940 U.S. Std Million', '1950 U.S. Std Million', '1960 U.S. Std Million', '1970 U.S. Std Million', '1980 U.S. Std Million', '1990 U.S. Std Million', '1991 Canadian Std Million', '1996 Canadian Std Million', '2000 U.S. Std Million', '2000 U.S. Std Population (Census P25-1130)', '2011 Canadian Standard Population', 'European (EU-27 plus EFTA 2011-2030) Std Million', 'European (Scandinavian 1960) Std Million', 'World (Segi 1960) Std Million', 'World (WHO 2000-2025) Std Million'
      • source: National Institutes of Health, National Cancer Institute, Surveillance, Epidemiology, and End Results Program

    Terms of use

    No restrictions are known to the author. Standard populations are published by different organisations for public usage.

  6. Number of global social network users 2017-2028

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  7. Weekly Top Global Artists_June_2025

    • kaggle.com
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ugwu Jesse (2025). Weekly Top Global Artists_June_2025 [Dataset]. https://www.kaggle.com/datasets/ugwujesse/weekly-top-global-artists-june-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Kaggle
    Authors
    Ugwu Jesse
    Description

    This dataset is a CSV format information that contains names of musical artist trending globally between May 30 -June 05, 2025 as recorded by Spotify along with their ranking. The other information such as the countries, cities and continent of the various musical artist residence and type of artist were manually filled up from personal research over the internet. It contains 200 rows and 6 columns.

  8. T

    EMPLOYED PERSONS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). EMPLOYED PERSONS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/employed-persons
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for EMPLOYED PERSONS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  9. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(28125832), csv(52019564), csv(5095), csv(60201673), csv(11738570), csv(60517511), csv(74689382), csv(60023260), csv(15127221), csv(24235858), csv(75015194), csv(74043128), csv(60676655), csv(74497014), csv(73906266), csv(1128641), csv(74351424), csv(51592721), zip, csv(25609913)Available download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  10. iNaturalist Research-grade Observations

    • gbif.org
    • smng.net
    • +5more
    Updated Aug 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    iNaturalist contributors; iNaturalist contributors (2025). iNaturalist Research-grade Observations [Dataset]. http://doi.org/10.15468/ab3s5x
    Explore at:
    Dataset updated
    Aug 27, 2025
    Dataset provided by
    iNaturalisthttp://inaturalist.org/
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Authors
    iNaturalist contributors; iNaturalist contributors
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Sep 17, 1768 - Aug 19, 2025
    Area covered
    Description

    Observations from iNaturalist.org, an online social network of people sharing biodiversity information to help each other learn about nature.

    Observations included in this archive met the following requirements:

    * Published under one of the following licenses or waivers: 1) https://creativecommons.org/publicdomain/zero/1.0/, 2) https://creativecommons.org/licenses/by/4.0/, 3) https://creativecommons.org/licenses/by-nc/4.0/

    * Achieved one of following iNaturalist quality grades: Research

    * Created on or before 2025-08-19 15:00:21 -0700

    You can view observations meeting these requirements at https://www.inaturalist.org/observations?created_d2=2025-08-19+15%3A00%3A21+-0700&d1=1600-01-01&license=CC0%2CCC-BY%2CCC-BY-NC&quality_grade=research

  11. 🐧 Palmer Penguins Dataset Extended

    • kaggle.com
    Updated Oct 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samy Baladram (2023). 🐧 Palmer Penguins Dataset Extended [Dataset]. http://doi.org/10.34740/kaggle/ds/3891364
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 22, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Samy Baladram
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    https://i.imgur.com/5rtbtpN.png" alt="Imgur">

    Overview

    The original Palmer's Penguins dataset is an invaluable resource in the world of data science, often used for statistical analysis, data visualization, and introductory machine learning tasks. Collected in the Palmer Archipelago near Antarctica, the dataset provides information on three species of penguins, including Adélie, Gentoo, and Chinstrap, and covers essential biological metrics such as bill dimensions and body mass.

    Our extended dataset aims to build upon this foundational work by incorporating new, realistic features. We have included additional variables like diet, year of observation, life stage, and health metrics. These extra features allow for a more nuanced understanding of penguin biology and ecology, making it ideal for more complex analyses, including but not limited to educational, ecological, and advanced machine learning applications.

    Columns

    The dataset consists of the following columns:

    • Species: Species of the penguin (Adelie, Chinstrap, Gentoo)
    • Island: Island where the penguin was found (Biscoe, Dream, Torgensen)
    • Sex: Gender of the penguin (Male, Female)
    • Diet: Primary diet of the penguin (Fish, Krill, Squid)
    • Year: Year the data was collected (2021-2025)
    • Life Stage: The life stage of the penguin (Chick, Juvenile, Adult)
    • Body Mass (g): Body mass in grams
    • Bill Length (mm): Bill length in millimeters
    • Bill Depth (mm): Bill depth in millimeters
    • Flipper Length (mm): Flipper length in millimeters
    • Health Metrics: Health status of the penguin (Healthy, Overweight, Underweight)

    What Sets This Dataset Apart?

    Temporal Insight

    The inclusion of yearly data from 2021 to 2025 allows for longitudinal studies, providing a temporal dimension that can help track the impact of climate change, dietary shifts, or other ecological factors on penguin populations over time.

    Comprehensive Health Indicators

    We introduce the 'Health Metrics' column, which takes into account the body mass, life stage, and species to categorize each penguin's health status. This provides a multi-faceted view of individual well-being and can be crucial for conservation studies.

    Multi-Dimensional Diet and Life Stages

    Our data structure enables the mapping of the diet to specific life stages, offering a granular understanding of penguin ecology. This added detail can be crucial for studying nutritional needs at different life stages.

    Accounting for Sexual Dimorphism

    Recognizing the importance of gender-based variations in penguin biology, our dataset incorporates attributes that allow for the study of sexual dimorphism, such as differing body sizes and potential diet variations between males and females.

    Ideal Usage Scenarios

    This enriched dataset is particularly suitable for: - Advanced ecological models that require multiple layers of data. - Educational case studies focusing on biology, ecology, or data science. - Data-driven conservation efforts aimed at penguin species. - Machine learning algorithms that benefit from diverse and multi-dimensional data.

    Acknowledgment

    We wish to express our deepest respect and acknowledgment to the original research team behind the Palmer's Penguins dataset. This Extended Palmer's Penguins dataset is designed to build upon the solid foundation laid by the original work. It is created to serve as a complementary resource that adds additional dimensions for research and educational purposes. In no way is this artificial dataset intended to discredit or disrespect the invaluable contributions made through the original dataset.

    All illustrations in this dataset are AI-generated. https://i.imgur.com/yzroo3h.png" alt="Imgur">

  12. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  13. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(16301), csv(5034), csv(463460), csv(2026589), csv(5401561), csv(164006), csv(200270), csv(419332), csv(406971), zipAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  14. b

    Apple Statistics (2025)

    • businessofapps.com
    Updated Jul 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). Apple Statistics (2025) [Dataset]. https://www.businessofapps.com/data/apple-statistics/
    Explore at:
    Dataset updated
    Jul 20, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...

  15. SARD - Search And Rescue Dataset

    • kaggle.com
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NikolasGegenava (2025). SARD - Search And Rescue Dataset [Dataset]. https://www.kaggle.com/datasets/nikolasgegenava/sard-search-and-rescue/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 2, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    NikolasGegenava
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    🔎 SARD - Search And Rescue Dataset, Containing Only 1 Class (Human).

    Dataset From: https://universe.roboflow.com/datasets-pdabr/sard-8xjhy

    ⛑️ This dataset contains multi-modal (Image / Labels) information collected from real-world images, taken by drone. It is designed to support the development and evaluation of AI models for locating, identifying, and tracking individuals in distress during disaster or emergency scenarios. To develop the SARD dataset, the authors involved actors, who simulated exhausted and injured people and classic types of movement. The images were recorded by high resolution camera with DJI Phantom 4A Drone.

    👀 Best approach to this dataset is YOLO (You Only Look Once) models, especially v5 or v8 for detection.

    📰 Publication Date: 2025, 2 May

    Classes: Human

    Images: Train 4k, Test 0.5k, Valid 1.1k

  16. Bank credit risk assessment 💵🏦💼

    • kaggle.com
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Kapturov (2025). Bank credit risk assessment 💵🏦💼 [Dataset]. https://www.kaggle.com/datasets/kapturovalexander/bank-credit-risk-assessment
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 15, 2025
    Dataset provided by
    Kaggle
    Authors
    Alexander Kapturov
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Credit risk is the probability of a financial loss resulting from a borrower's failure to repay a loan. Essentially, credit risk refers to the risk that a lender may not receive the owed principal and interest, which results in an interruption of cash flows and increased costs for collection.

    Dataset features

    1. Debt (Задолженность): The total outstanding debt amount owed by the client.
    2. Overdue Days (Просрочка, дни): The number of days a payment is overdue.
    3. Initial Limit (Первоначальный лимит): The initial credit limit assigned to the client.
    4. Birth Date (BIRTHDATE): The client's date of birth.
    5. Sex (SEX): The client's gender (e.g., male, female).
    6. Education (EDU): The client's level of education (e.g., high school, university).
    7. Income (INCOME): The client's monthly or annual income.
    8. Loan Term (TERM): The duration of the loan or credit agreement in months.
    9. Credit History Rating (Рейтинг кредитной истории): A score or rating reflecting the client's credit history.
    10. Living Area (LV_AREA): The geographical area or region where the client resides.
    11. Settlement Name (LV_SETTLEMENTNAME): The name of the city, town, or settlement where the client lives.
    12. Industry Name (INDUSTRYNAME): The industry or sector in which the client is employed.
    13. Probability of Default (PDN): The estimated likelihood that the client will default on the loan.
    14. Client ID (CLIENTID): A unique identifier assigned to the client.
    15. Scoring Mark (SCORINGMARK): A credit score or risk assessment mark assigned to the client.
    16. Underage Children Count (UNDERAGECHILDRENCOUNT): The number of underage children the client has.
    17. Velcom Scoring (VELCOMSCORING): A specific scoring metric (possibly telecom-related) used in risk assessment.
    18. Family Status (FAMILYSTATUS): The client's marital or family status (e.g., single, married, divorced).

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10074224%2Fe3f381f2b16279a11f8a88975c643fb3%2FIndias-largest-bank-HDFC-Bank-has-climbed-back-to-the-top-ten-banks-in-the-world-in-terms-of-market-capitalization.jpg?generation=1746093705818402&alt=media" alt="">

  17. Infrastructure Climate Resilience Assessment Data Starter Kit for New...

    • zenodo.org
    zip
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2025). Infrastructure Climate Resilience Assessment Data Starter Kit for New Zealand (Islands) [Dataset]. http://doi.org/10.5281/zenodo.16539779
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 29, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020; Baugh et al, 2024)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2025)
    • railways (OpenStreetMap, 2025)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    Contextual information:

    • elevation (European Union and ESA, 2021)
    • land-use and land cover (Copernicus Climate Change Service and Climate Data Store, 2019)
    • administrative boundaries from geoBoundaries (Runfola et al., 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Baugh, Calum; Colonese, Juan; D'Angelo, Claudia; Dottori, Francesco; Neal, Jeffrey; Prudhomme, Christel; Salamon, Peter (2024): Global river flood hazard maps. European Commission, Joint Research Centre (JRC) [Dataset] PID: data.europa.eu/89h/jrc-floods-floodmapgl_rp50y-tif
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.006f2c9a (Accessed on 09-AUG-2024)
    • Copernicus DEM - Global Digital Elevation Model (2021) DOI: 10.5270/ESA-c5d3d65 (produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved)
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2025) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, et al. (2020) geoBoundaries: A global database of political administrative boundaries. PLoS ONE 15(4): e0231866. DOI: 10.1371/journal.pone.0231866.
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  18. Infrastructure Climate Resilience Assessment Data Starter Kit for British...

    • zenodo.org
    zip
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2025). Infrastructure Climate Resilience Assessment Data Starter Kit for British Virgin Islands [Dataset]. http://doi.org/10.5281/zenodo.16540148
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 29, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    British Virgin Islands
    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020; Baugh et al, 2024)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2025)
    • railways (OpenStreetMap, 2025)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    Contextual information:

    • elevation (European Union and ESA, 2021)
    • land-use and land cover (Copernicus Climate Change Service and Climate Data Store, 2019)
    • administrative boundaries from geoBoundaries (Runfola et al., 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Baugh, Calum; Colonese, Juan; D'Angelo, Claudia; Dottori, Francesco; Neal, Jeffrey; Prudhomme, Christel; Salamon, Peter (2024): Global river flood hazard maps. European Commission, Joint Research Centre (JRC) [Dataset] PID: data.europa.eu/89h/jrc-floods-floodmapgl_rp50y-tif
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.006f2c9a (Accessed on 09-AUG-2024)
    • Copernicus DEM - Global Digital Elevation Model (2021) DOI: 10.5270/ESA-c5d3d65 (produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved)
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2025) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, et al. (2020) geoBoundaries: A global database of political administrative boundaries. PLoS ONE 15(4): e0231866. DOI: 10.1371/journal.pone.0231866.
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  19. Infrastructure Climate Resilience Assessment Data Starter Kit for North...

    • zenodo.org
    zip
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2025). Infrastructure Climate Resilience Assessment Data Starter Kit for North Pacific Islands (USA) [Dataset]. http://doi.org/10.5281/zenodo.16540129
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 29, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Pacific Ocean
    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020; Baugh et al, 2024)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2025)
    • railways (OpenStreetMap, 2025)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    Contextual information:

    • elevation (European Union and ESA, 2021)
    • land-use and land cover (Copernicus Climate Change Service and Climate Data Store, 2019)
    • administrative boundaries from geoBoundaries (Runfola et al., 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Baugh, Calum; Colonese, Juan; D'Angelo, Claudia; Dottori, Francesco; Neal, Jeffrey; Prudhomme, Christel; Salamon, Peter (2024): Global river flood hazard maps. European Commission, Joint Research Centre (JRC) [Dataset] PID: data.europa.eu/89h/jrc-floods-floodmapgl_rp50y-tif
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.006f2c9a (Accessed on 09-AUG-2024)
    • Copernicus DEM - Global Digital Elevation Model (2021) DOI: 10.5270/ESA-c5d3d65 (produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved)
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2025) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, et al. (2020) geoBoundaries: A global database of political administrative boundaries. PLoS ONE 15(4): e0231866. DOI: 10.1371/journal.pone.0231866.
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  20. Facebook users worldwide 2017-2027

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
Organization logo

Worldwide COVID-19 Data from WHO (2025 Edition)

Global COVID-19 case and death data by country from WHO, up to 2025

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 3, 2025
Dataset provided by
Kaggle
Authors
Adil Shamim
Description

Dataset Overview

This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

Source Information

  • Website: WHO COVID-19 Dashboard
  • Organization: World Health Organization (WHO)
  • Data Coverage: Global (by country/territory)
  • Time Period: Up to 2025

The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

Dataset Contents

  • Country/Region: The name of the country or territory.
  • Date: Reporting date.
  • New Cases: Number of new confirmed COVID-19 cases.
  • Cumulative Cases: Total confirmed COVID-19 cases to date.
  • New Deaths: Number of new confirmed deaths due to COVID-19.
  • Cumulative Deaths: Total deaths reported to date.
  • Additional fields may include population, rates per 100,000, and more (see data files for details).

How to Use

This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

Data Reliability

The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

Acknowledgements

Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

Search
Clear search
Close search
Google apps
Main menu