32 datasets found
  1. World Bank: GHNP Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: GHNP Data [Dataset]. https://www.kaggle.com/theworldbank/world-bank-health-population
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://topics.nytimes.com/top/reference/timestopics/organizations/w/world_bank/index.html
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.

    Update Frequency: Biannual

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics

    https://cloud.google.com/bigquery/public-data/world-bank-hnp

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Citation: The World Bank: Health Nutrition and Population Statistics

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What’s the average age of first marriages for females around the world?

  2. G

    GPWv411: Population Density (Gridded Population of the World Version 4.11)

    • developers.google.com
    Updated Aug 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA SEDAC at the Center for International Earth Science Information Network (2019). GPWv411: Population Density (Gridded Population of the World Version 4.11) [Dataset]. http://doi.org/10.7927/H49C6VHW
    Explore at:
    Dataset updated
    Aug 11, 2019
    Dataset provided by
    NASA SEDAC at the Center for International Earth Science Information Network
    Time period covered
    Jan 1, 2000 - Jan 1, 2020
    Area covered
    Earth
    Description

    This dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.

  3. World Bank: Education Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: Education Data [Dataset]. https://www.kaggle.com/datasets/theworldbank/world-bank-intl-education
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population

    http://data.worldbank.org/data-catalog/ed-stats

    https://cloud.google.com/bigquery/public-data/world-bank-education

    Citation: The World Bank: Education Statistics

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    Of total government spending, what percentage is spent on education?

  4. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  5. 📱 Google Play App Reviews Dataset 📊

    • kaggle.com
    Updated Jan 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hassaan Mustafavi (2025). 📱 Google Play App Reviews Dataset 📊 [Dataset]. https://www.kaggle.com/datasets/hassaanmustafavi/google-play-app-reviews-dataset/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 26, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hassaan Mustafavi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Don't forget to hit the upvote🙏🙏

    🔖 Overview

    The Google Play App Reviews dataset contains valuable feedback from users who have reviewed apps on the Google Play Store. This dataset includes both user ratings and detailed comments, making it ideal for sentiment analysis, user experience evaluation, and app performance research.

    📚 Columns Description

    Column NameDescription
    review_idUnique identifier for each review. 🆔
    user_nameName of the user who submitted the review. 👤
    review_titleTitle of the review (may be empty in some cases). 📝
    review_descriptionThe content or feedback given by the user about the app. 💬
    ratingRating given by the user, ranging from 1 (low) to 5 (high). ⭐
    thumbs_upNumber of thumbs up the review received. 👍
    review_dateDate and time the review was submitted. 📅
    developer_responseResponse from the app developer (if provided). 💬👨‍💻
    developer_response_dateDate when the developer responded to the review. 📅💻
    appVersionThe version of the app when the review was submitted. 📱🔢
    language_codeThe language in which the review was written (e.g., 'en' for English). 🗣️
    country_codeThe country of the user based on their review (e.g., 'us' for United States). 🌍

    📊 Key Features

    • Rich Feedback: Includes both ratings and textual feedback from users.
    • 🌍 Global Reach: Reviews are collected from users worldwide, providing diverse insights.
    • 🔒 Anonymized Data: No personally identifiable information is included.
    • ⚙️ Ready for Analysis: Cleaned and pre-processed for immediate use in sentiment analysis and app performance evaluation.

    🎯 Potential Use Cases

    • Sentiment Analysis: Analyze user sentiment based on reviews and ratings.
    • Customer Feedback: Measure user satisfaction and discover areas for improvement.
    • App Version Comparison: Evaluate how different versions of the app perform based on user feedback.
    • Geographic Insights: Analyze regional differences in app usage and reviews.
    • Developer Interaction: Assess the effectiveness of developer responses to user reviews.

    🚀 Get Started!

    Ready to dive into the world of app feedback and sentiment analysis? Explore the dataset, build models to understand user sentiments, and enhance app experiences based on real feedback.

    Happy coding! ✨

  6. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +6more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset authored and provided by
    Googlehttp://google.com/
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  7. Forest proximate people – 1km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people – 1km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b4
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 1 kilometer of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Distributor: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 1 kilometer of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 1-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people – 1km cutoff distance (100-m resolution)"

  8. d

    A global data set of realized treelines sampled from Google Earth aerial...

    • search.dataone.org
    • datadryad.org
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Kienle; Severin D. H. Irl; Carl Beierkuhnlein (2023). A global data set of realized treelines sampled from Google Earth aerial images [Dataset]. http://doi.org/10.5061/dryad.7h44j0zzk
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    David R. Kienle; Severin D. H. Irl; Carl Beierkuhnlein
    Time period covered
    Jan 1, 2023
    Description

    We sampled Google Earth aerial images to get a representative and globally distributed dataset of treeline locations. Google Earth images are available to everyone, but may not be automatically downloaded and processed according to Google's license terms. Since we only wanted to detect tree individuals, we evaluated the aerial images manually by hand.

    Â

    Doing so, we scaled Google Earth’s GUI interface to a buffer size of approximately 6000 m from a perspective of 100 m (+/- 20 m) above Earth’s surface. Within this buffer zone, we took coordinates and elevation of the highest realized treeline locations. In some remote areas of Russia and Canada, individual trees were not identifiable due to insufficient image resolution. If this was the case, no treeline was sampled, unless we detected another visible treeline within the 6,000 m buffer and took this next highest treeline. We did not apply an automated image processing approach. We calculated mass elevation effect as the distance to t..., The file global-treeline-data.csv contains the whole data set. Please find further information about the data set in the README.md. Please download both files and load the .csv file into your stats software, e.g. R., The global-treeline-data.csv file can be opened with several software options, e.g. R, LibreOffice or any simple editor.

  9. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/datasets/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  10. H

    Web-based GIS for spatiotemporal crop climate niche mapping

    • dataverse.harvard.edu
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    B. G. Peter; J. P. Messina; Z. Lin (2020). Web-based GIS for spatiotemporal crop climate niche mapping [Dataset]. http://doi.org/10.7910/DVN/UFC6B5
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    B. G. Peter; J. P. Messina; Z. Lin
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/UFC6B5https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/UFC6B5

    Description

    Web-based GIS for spatiotemporal crop climate niche mapping Interactive Google Earth Engine Application—Version 2, July 2020 https://cropniche.cartoscience.com https://cartoscience.users.earthengine.app/view/crop-niche Google Earth Engine Code /* ---------------------------------------------------------------------------------------------------------------------- # CropSuit-GEE Authors: Brad G. Peter (bpeter@ua.edu), Joseph P. Messina, and Zihan Lin Organizations: BGP, JPM - University of Alabama; ZL - Michigan State University Last Modified: 06/28/2020 To cite this code use: Peter, B. G.; Messina, J. P.; Lin, Z., 2019, "Web-based GIS for spatiotemporal crop climate niche mapping", https://doi.org/10.7910/DVN/UFC6B5, Harvard Dataverse, V1 ------------------------------------------------------------------------------------------------------------------------- This is a Google Earth Engine crop climate suitability geocommunication and map export tool designed to support agronomic development and deployment of improved crop system technologies. This content is made possible by the support of the American People provided to the Feed the Future Innovation Lab for Sustainable Intensification through the United States Agency for International Development (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Program activities are funded by USAID under Cooperative Agreement No. AID-OAA-L-14-00006. ------------------------------------------------------------------------------------------------------------------------- Summarization of input options: There are 14 user options available. The first is a country of interest selection using a 2-digit FIPS code (link available below). This selection is used to produce a rectangular bounding box for export; however, other geometries can be selected with minimal modification to the code. Options 2 and 3 specify the complete temporal range for aggregation (averaged across seasons; single seasons may also be selected). Options 4–7 specify the growing season for calculating total seasonal rainfall and average season temperatures and NDVI (NDVI is for export only and is not used in suitability determination). Options 8–11 specify the climate parameters for the crop of interest (rainfall and temperature max/min). Option 12 enables masking to agriculture, 13 enables exporting of all data layers, and 14 is a text string for naming export files. ------------------------------------------------------------------------------------------------------------------------- ••••••••••••••••••••••••••••••••••••••••••• USER OPTIONS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• */ // CHIRPS data availability: https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD // MOD11A2 data availability: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2 var country = 'MI' // [1] https://en.wikipedia.org/wiki/List_of_FIPS_country_codes var startRange = 2001 // [2] var endRange = 2017 // [3] var startSeasonMonth = 11 // [4] var startSeasonDay = 1 // [5] var endSeasonMonth = 4 // [6] var endSeasonDay = 30 // [7] var precipMin = 750 // [8] var precipMax = 1200 // [9] var tempMin = 22 // [10] var tempMax = 32 // [11] var maskToAg = 'TRUE' // [12] 'TRUE' (default) or 'FALSE' var exportLayers = 'TRUE' // [13] 'TRUE' (default) or 'FALSE' var exportNameHeader = 'crop_suit_maize' // [14] text string for naming export file // ••••••••••••••••••••••••••••••••• NO USER INPUT BEYOND THIS POINT •••••••••••••••••••••••••••••••••••••••••••••••••••• // Access precipitation and temperature ImageCollections and a global countries FeatureCollection var region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017') .filterMetadata('country_co','equals',country) var precip = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD').select('precipitation') var temp = ee.ImageCollection('MODIS/006/MOD11A2').select(['LST_Day_1km','LST_Night_1km']) var ndvi = ee.ImageCollection('MODIS/006/MOD13Q1').select(['NDVI']) // Create layers for masking to agriculture and masking out water bodies var waterMask = ee.Image('UMD/hansen/global_forest_change_2015').select('datamask').eq(1) var agModis = ee.ImageCollection('MODIS/006/MCD12Q1').select('LC_Type1').mode() .remap([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], [0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0]) var agGC = ee.Image('ESA/GLOBCOVER_L4_200901_200912_V2_3').select('landcover') .remap([11,14,20,30,40,50,60,70,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230], [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) var cropland = ee.Image('USGS/GFSAD1000_V1').neq(0) var agMask = agModis.add(agGC).add(cropland).gt(0).eq(1) // Modify user input options for processing with raw data var years = ee.List.sequence(startRange,endRange) var bounds = region.geometry().bounds() var tMinMod = (tempMin+273.15)/0.02 var tMaxMod = (tempMax+273.15)/0.02 //...

  11. R

    Google Street View Store (with Rotation) Dataset

    • universe.roboflow.com
    zip
    Updated May 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pigeon (2022). Google Street View Store (with Rotation) Dataset [Dataset]. https://universe.roboflow.com/pigeon/google-street-view-store-dataset--with-rotation/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 24, 2022
    Dataset authored and provided by
    Pigeon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Store Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Retail Analysis and Mapping: Using the "Google Street View Store Dataset (With Rotation)", businesses and researchers can analyze the distribution of different store types, identify areas with a high concentration of specific stores, and visualize the layout of retail landscapes within cities or regions.

    2. Store Accessibility Assessment: City planners and disability advocacy organizations can use the dataset to evaluate the accessibility of stores and shopping areas for individuals with disabilities, considering factors such as store locations, entrances, and nearby parking facilities.

    3. Competitor Analysis and Strategic Planning: Companies can use the dataset to identify the locations of competitors' stores and assess their market presence in specific areas. This can aid in making important strategic decisions, such as targeting under-served areas or launching new stores.

    4. Real Estate Investment and Development: Real estate investors and developers can use the dataset to find promising areas for commercial development, identify potential retail spaces, and make informed investment decisions based on the store distribution in neighborhoods.

    5. Augmented Reality Applications: Developers of AR applications can use the dataset to create AR experiences that provide information about nearby stores, such as store ratings, opening hours, and special offers, to users in real time as they navigate through the streets using their devices.

  12. g

    Wikipedia, Global Oil Refineries, World, 2.3.2004

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). Wikipedia, Global Oil Refineries, World, 2.3.2004 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    data
    Wikipedia
    Description

    This is a data set from the Google Earth BBS of oil refineries around the globe posted in Feb 3rd 2004. The original creator of the data set posted a set of caveats to the data on the Google BBS (http://bbs.keyhole.com/ubb/showflat.php/Cat/0/Number/142111/): Here are placemarks for most of the world's crude oil refineries and their capacities. There is no way I got them all, and some are probably not in the exact location. Those include refineries that are grouped together, and in very low resolution areas. Please point out any incorrect locations and refineries not listed (with their capacities) because help is needed especially in these areas: Japan: Missing many, and the ones I have marked are probably not in the correct location. China: Missing many. Mostly the smaller CNCP (PetroChina) ones. Russia: Must be missing some. France: Same Italy: Same Germany: Maybe a few here too. Middle East: Iraq, and some smaller countries not listed. You can see most of this in list form at: http://en.wikipedia.org/wiki/List_of_oil_refineries

  13. Infrastructure Climate Resilience Assessment Data Starter Kit for Nepal

    • zenodo.org
    zip
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2024). Infrastructure Climate Resilience Assessment Data Starter Kit for Nepal [Dataset]. http://doi.org/10.5281/zenodo.10796765
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2023)
    • railways (OpenStreetMap, 2023)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  14. Infrastructure Climate Resilience Assessment Data Starter Kit for Ghana

    • zenodo.org
    zip
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2024). Infrastructure Climate Resilience Assessment Data Starter Kit for Ghana [Dataset]. http://doi.org/10.5281/zenodo.14536877
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Ghana
    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020; Baugh et al, 2024)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2023)
    • railways (OpenStreetMap, 2023)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    Contextual information:

    • elevation (European Union and ESA, 2021)
    • land-use and land cover (Copernicus Climate Change Service and Climate Data Store, 2019)
    • administrative boundaries from geoBoundaries (Runfola et al., 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Baugh, Calum; Colonese, Juan; D'Angelo, Claudia; Dottori, Francesco; Neal, Jeffrey; Prudhomme, Christel; Salamon, Peter (2024): Global river flood hazard maps. European Commission, Joint Research Centre (JRC) [Dataset] PID: data.europa.eu/89h/jrc-floods-floodmapgl_rp50y-tif
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.006f2c9a (Accessed on 09-AUG-2024)
    • Copernicus DEM - Global Digital Elevation Model (2021) DOI: 10.5270/ESA-c5d3d65 (produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved)
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, et al. (2020) geoBoundaries: A global database of political administrative boundaries. PLoS ONE 15(4): e0231866. DOI: 10.1371/journal.pone.0231866.
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  15. R

    Cat Dog Spider Pumpkin Hooman Dataset

    • universe.roboflow.com
    zip
    Updated Jan 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Guhl (2023). Cat Dog Spider Pumpkin Hooman Dataset [Dataset]. https://universe.roboflow.com/peter-guhl-de1vy/cat-dog-spider-pumpkin-hooman/dataset/4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 13, 2023
    Dataset authored and provided by
    Peter Guhl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Pumpkins Bounding Boxes
    Description

    Started out as a pumpkin detector to test training YOLOv5. Now suffering from extensive feature creep and probably ending up as a cat/dog/spider/pumpkin/randomobjects-detector. Or as a desaster.

    The dataset does not fit https://docs.ultralytics.com/tutorials/training-tips-best-results/ well. There are no background images and the labeling is often only partial. Especially in the humans and pumpkin category where there are often lots of objects in one photo people apparently (and understandably) got bored and did not labe everything. And of course the images from the cat-category don't have the humans in it labeled since they come from a cat-identification model which ignored humans. It will need a lot of time to fixt that.

    Dataset used: - Cat and Dog Data: Cat / Dog Tutorial NVIDIA Jetson https://github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-cat-dog.md © 2016-2019 NVIDIA according to bottom of linked page - Spider Data: Kaggle Animal 10 image set https://www.kaggle.com/datasets/alessiocorrado99/animals10 Animal pictures of 10 different categories taken from google images Kaggle project licensed GPL 2 - Pumpkin Data: Kaggle "Vegetable Images" https://www.researchgate.net/publication/352846889_DCNN-Based_Vegetable_Image_Classification_Using_Transfer_Learning_A_Comparative_Study https://www.kaggle.com/datasets/misrakahmed/vegetable-image-dataset Kaggle project licensed CC BY-SA 4.0 - Some pumpkin images manually copied from google image search - https://universe.roboflow.com/chess-project/chess-sample-rzbmc Provided by a Roboflow user License: CC BY 4.0 - https://universe.roboflow.com/steve-pamer-cvmbg/pumpkins-gfjw5 Provided by a Roboflow user License: CC BY 4.0 - https://universe.roboflow.com/nbduy/pumpkin-ryavl Provided by a Roboflow user License: CC BY 4.0 - https://universe.roboflow.com/homeworktest-wbx8v/cat_test-1x0bl/dataset/2 - https://universe.roboflow.com/220616nishikura/catdetector - https://universe.roboflow.com/atoany/cats-s4d4i/dataset/2 - https://universe.roboflow.com/personal-vruc2/agricultured-ioth22 - https://universe.roboflow.com/sreyoshiworkspace-radu9/pet_detection - https://universe.roboflow.com/artyom-hystt/my-dogs-lcpqe - license: Public Domain url: https://universe.roboflow.com/dolazy7-gmail-com-3vj05/sweetpumpkin/dataset/2 - https://universe.roboflow.com/tristram-dacayan/social-distancing-g4pbu - https://universe.roboflow.com/fyp-3edkl/social-distancing-2ygx5 License MIT - Spiders: https://universe.roboflow.com/lucas-lins-souza/animals-train-yruka

    Currently I can't guarantee it's all correctly licenced. Checks are in progress. Inform me if you see one of your pictures and want it to be removed!

  16. g

    Google Earth Community, Worldwide Nuclear Test Sites, Global, 2007

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). Google Earth Community, Worldwide Nuclear Test Sites, Global, 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    data
    Description

    Since the first nuclear bomb test in New Mexico in 1945, there have been over 2000 confirmed nuclear explosions around the globe. This dataset includes accurate to questionable locations of all 2000+. This data was found online at the Google Earth Community site. It was posted by the user Hill. Source: http://bbs.keyhole.com/ubb/showflat.php/Cat/0/Number/34290/an/0/page/0#34290 Accessed: 9.11.07

  17. e

    InsectChange: A global database of long-term changes in insect, arachnid and...

    • knb.ecoinformatics.org
    • search.dataone.org
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roel van Klink; Diana E. Bowler; Jonathan M. Chase; Orr Comay; Michael M. Driessen; S.K. Morgan Ernest; Alessandro Gentile; Francis Gilbert; Konstantin Gongalsky; Jennifer Owen; Guy Pe'er; Israel Pe'er; Vincent H. Resh; Ilia Rochlin; Sebastian Schuch; Ann E. Swengel; Scott R. Swengel; Thomas L. Valone; Rikjan Vermeulen; Tyson Wepprich; Jerome Wiedmann; Minghua Shen (2023). InsectChange: A global database of long-term changes in insect, arachnid and Entognatha assemblages [Dataset]. https://knb.ecoinformatics.org/view/urn%3Auuid%3A9c946111-05e2-48c9-afb1-2783ee43d0ed
    Explore at:
    Dataset updated
    Oct 2, 2023
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Roel van Klink; Diana E. Bowler; Jonathan M. Chase; Orr Comay; Michael M. Driessen; S.K. Morgan Ernest; Alessandro Gentile; Francis Gilbert; Konstantin Gongalsky; Jennifer Owen; Guy Pe'er; Israel Pe'er; Vincent H. Resh; Ilia Rochlin; Sebastian Schuch; Ann E. Swengel; Scott R. Swengel; Thomas L. Valone; Rikjan Vermeulen; Tyson Wepprich; Jerome Wiedmann; Minghua Shen
    Time period covered
    Jan 1, 1925 - Jan 1, 2020
    Area covered
    Variables measured
    End, Date, Link, Rank, Year, Class, Error, Genus, Level, Order, and 79 more
    Description

    UPDATE 2023 New tables have been added and old tables have been updated with new datasets Table 'Rawdata 2023.csv' contains the data as extracted from the publications, and as provided by the data owners. This table is linked to the table 'Taxondata 2023' via the column 'Taxon', to the table 'PlotData 2023' via the column 'Plot_ID' and to the table 'SampleData 2023' via the table 'Sample_ID'. This is the data from which the table 'InsectAbundanceBiomassData' was produced, but will not reproduce the exact same table as used in 2020 for the following reasons: 1) some mistakes have been corrected, 2) new datasets were added, 3) it contains other taxa than insects, arachnids and Entognatha: mollusks, worms and some vertebrates are still retained if they were present in the raw data and should be filtered out as needed, 4) other biodiversity metrics than abundance or biomass are included: density (abundance per fixed surface area), richness (number of species), Shannon (Shannon-Wiener index), Pielou (pielou's evenness index), rarefiedRichness (expected number of species for a fixed number of individuals), ENSPIE (inverted Simpson diversity index = Effective number of species of the Probability of interspecific encounter), 5) some raw data are still missing from this table, because for our newer work the raw data needed rarefaction for equalizing sampling effort. One study that was obviously incorrect has been removed (Datasource_ID 70). Table 'Taxondata 2023.csv' contains a taxonomic backbone to resolve all taxa in the table 'rawData 2023' to higher taxonomy. Note that this taxonomy is not corrected for synonyms and taxonomic changes. Nevertheless, the higher taxa are correctly assigned This data set under CC-BY license contains time series of total abundance and/or biomass of assemblages of insect, arachnid and Entognatha assemblages (grouped at the family level or higher taxonomic resolution), monitored by standardized means for ten or more years. The data set consists of five linked tables, representing information on the study level, the plot level, about sampling, and the measured assemblage sizes. all references to the original data sources can be found in the pdf with references, and a Google Earth file (kml) file presents the locations (including metadata) of all datasets. When using (parts of) this data set, please respect the original open access licenses. This data set underlies all analyses performed in the paper 'Meta-analysis reveals declines in terrestrial, but increases in freshwater insect abundances', a meta-analysis of changes in insect assemblage sizes, and is accompanied by a data paper entitled 'InsectChange – a global database of temporal changes in insect and arachnid assemblages'. Consulting the data paper before use is recommended. Tables that can be used to calculate trends of specific taxa and for species richness will be added as they become available. The data set consists of four tables that are linked by the columns 'DataSource_ID'. and 'Plot_ID', and a table with references to original research. In the table 'DataSources', descriptive data is provided at the dataset level: Links are provided to online repositories where the original data can be found, it describes whether the dataset provides data on biomass, abundance or both, the invertebrate group under study, the realm, and describes the location of sampling at different geographic scales (continent to state). This table also contains a reference column. The full reference to the original data is found in the file 'References_to_original_data_sources.pdf'. In the table 'PlotData' more details on each site within each dataset are provided: there is data on the exact location of each plot, whether the plots were experimentally manipulated, and if there was any spatial grouping of sites (column 'Location'). Additionally, this table contains all explanatory variables used for analysis, e.g. climate change variables, land-use variables, protection status. The table 'SampleData' describes the exact source of the data (table X, figure X, etc), the extraction methods, as well as the sampling methods (derived from the original publications). This includes the sampling method, sampling area, sample size, and how the aggregation of samples was done, if reported. Also, any calculations we did on the original data (e.g. reverse log transformations) are detailed here, but more details are provided in the data paper. This table links to the table 'DataSources' by the column 'DataSource_ID'. Note that each datasource may contain multiple entries in the 'SampleData' table if the data were presented in different figures or tables, or if there was any other necessity to split information on sampling details. The table 'InsectAbundanceBiomassData' provides the insect abundance or biomass numbers as analysed in t... Visit https://dataone.org/datasets/urn%3Auuid%3A9c946111-05e2-48c9-afb1-2783ee43d0ed for complete metadata about this dataset.

  18. Milan (ITALY) - Urban Agriculture spatial dataset (years 2007 and 2014)

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Dec 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pulighe Giuseppe; Pulighe Giuseppe; Lupia Flavio; Lupia Flavio (2021). Milan (ITALY) - Urban Agriculture spatial dataset (years 2007 and 2014) [Dataset]. http://doi.org/10.5281/zenodo.5773844
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 11, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Pulighe Giuseppe; Pulighe Giuseppe; Lupia Flavio; Lupia Flavio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Italy, Milan
    Description

    The data in this dataset is a spatial inventory of urban agriculture (UA) carried out in the city of Milan (Italy). UA areas where identified with a multi-step and iterative procedure by using different web-mapping tools, especially multitemporal Google Earth images, and ancillary data such as Google Street View and Bing Maps.

    License

    Creative Commons CC-BY

    Disclaimer

    Despite our best efforts to validate the data, some information may be incorrect.

    Description of the dataset

    Typologies of UA

    • Residential garden: Private parcel near single houses (e.g. backyard), villas, buildings, industrial and commercial activities, generally managed by property owners. Cultivation is diversified ranging from leafy vegetables to herbs and fruit trees. Production is intended for self-consumption and/or for hobby purposes.
    • Community garden: A large area subdivided into multipleplots managed individually (i.e. allotment) or collectively by a group of people. Crop production is intended for self-consumption. Land is assigned by the Municipality; several cases of land cultivated without authorization are also common.
    • Urban farm: Parcel managed by professional farmers with an intensive and an advanced cropping system. The cultivation can be specialized or oriented to high diversity vegetables. The production is intended for market. The mapping procedure focus on arable crops, horticulture, vineyard, olive groves and orchard.
    • Institutional garden: Parcel managed by institutions or organizations like schools, religious center, prisons and non-profit organizations. The production is generally intended for self-consumption and less frequently for trade. Several gardens in this category are intended for social purposes (e.g. recreation,education, etc.).
    • Illegal garden: Parcel isolated, cultivated without authorization organized and managed individually or by a few people. Localization occurs on unused or abandoned areas owned by public bodies or private subjects. The production is intended for self-consumption.
    • Nurseries: A large area subdivided into multiple plots managed for growing ornamental plants and flowers.

    Land use typologies

    • Horticulture: annual crops generally seed sown in spring or summer (tomatoes, lettuce, zucchini, cucumbers, peppers).
    • Vineyard: grape vines grown in order to produce wine or table grape.
    • Olive groves: olive trees grown in order to produce olive oil or table olives.
    • Orchards: mixed trees such as orange, stone fruit, pome fruit, olive trees.
    • Mixed crops: an area grown with a mix of horticulture crops and fruit trees, not divisible.
    • Nurseries: ornamental plants, trees, flowers.

    Credit

    Pulighe G., Lupia F. (2019) Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy. Sustainability 2019, 11(7), 1846

    https://www.mdpi.com/2071-1050/11/7/1846

  19. Data from: Facial Features Dataset

    • universe.roboflow.com
    zip
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google Image Dataset (2025). Facial Features Dataset [Dataset]. https://universe.roboflow.com/google-image-dataset-xce2y/facial-features-zzwny/dataset/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    Googlehttp://google.com/
    Authors
    Google Image Dataset
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Facial Features Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Emotional Recognition: This model could be used to detect facial features and patterns, identifying emotions in subjects. This application could be beneficial in psychology research, customer satisfaction surveys, or enhancing the user experience in interactive applications.

    2. Security Systems: The model can be utilized in security surveillance or biometric authentication, where individuals are identified based on their facial features. It can detect if a subject's eyes are open or closed and whether their mouth is open or closed, which can add an extra level of detail and accuracy to identification processes.

    3. Virtual Reality & Gaming: It could be applied in real-time tracking of facial features to control avatars or characters in virtual reality or gaming platforms, significantly improving user engagement and interactivity.

    4. Health Monitoring: In healthcare, the model can be employed to track patients' facial expressions, potentially recognizing discomfort or distress and making remote monitoring more efficient.

    5. Advertising & Market Research: Companies can use this model to analyze the audience's reaction to their product or advertisement by tracking changes in facial features. This could provide valuable insights about the emotional impact of their content.

  20. A

    ‘FAANG- Complete Stock Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘FAANG- Complete Stock Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-faang-complete-stock-data-36c1/9110ef3b/?iid=011-763&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘FAANG- Complete Stock Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/aayushmishra1512/faang-complete-stock-data on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    There are a few companies that are considered to be revolutionary. These companies also happen to be a dream place to work at for many many people across the world. These companies include - Facebook,Amazon,Apple,Netflix and Google also known as FAANG! These companies make ton of money and they help others too by giving them a chance to invest in the companies via stocks and shares. This data wass made targeting these stock prices.

    Content

    The data contains information such as opening price of a stock, closing price, how much of these stocks were sold and many more things. There are 5 different CSV files in the data for each company.

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
World Bank (2019). World Bank: GHNP Data [Dataset]. https://www.kaggle.com/theworldbank/world-bank-health-population
Organization logo

World Bank: GHNP Data

World Bank: Global Health, Nutrition, and Population Data (BigQuery Dataset)

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Mar 20, 2019
Dataset authored and provided by
World Bankhttp://topics.nytimes.com/top/reference/timestopics/organizations/w/world_bank/index.html
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

Content

This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.

Update Frequency: Biannual

For more information, see the World Bank website.

Fork this kernel to get started with this dataset.

Acknowledgements

https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics

https://cloud.google.com/bigquery/public-data/world-bank-hnp

Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

Citation: The World Bank: Health Nutrition and Population Statistics

Banner Photo by @till_indeman from Unplash.

Inspiration

What’s the average age of first marriages for females around the world?

Search
Clear search
Close search
Google apps
Main menu