34 datasets found
  1. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. M

    World Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

  3. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  4. Standard populations dataset

    • kaggle.com
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Kleine (2023). Standard populations dataset [Dataset]. https://www.kaggle.com/datasets/matthiaskleine/standard-populations-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Matthias Kleine
    Description

    Do you know further standard populations?

    If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.

    German "Federal Health Monitoring System" about 'standard populations':

    "Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).

    Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:

    Which standard population is used for comparison basically, does not matter. It is important, however, that

    1. the demographic structure of the standard population is not too dissimilar to that of the reference population and
    2. the comparable rates refer to the same standard."

    Aim of this dataset

    The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.

    Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System

    • standard_populations_19_age_groups.csv
      • 19 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85+'
      • 15 standard populations: '1940 U.S. Std Million', '1950 U.S. Std Million', '1960 U.S. Std Million', '1970 U.S. Std Million', '1980 U.S. Std Million', '1990 U.S. Std Million', '1991 Canadian Std Million', '1996 Canadian Std Million', '2000 U.S. Std Million', '2000 U.S. Std Population (Census P25-1130)', '2011 Canadian Standard Population', 'European (EU-27 plus EFTA 2011-2030) Std Million', 'European (Scandinavian 1960) Std Million', 'World (Segi 1960) Std Million', 'World (WHO 2000-2025) Std Million'
      • source: National Institutes of Health, National Cancer Institute, Surveillance, Epidemiology, and End Results Program

    Terms of use

    No restrictions are known to the author. Standard populations are published by different organisations for public usage.

  5. N

    Black Earth Town, Wisconsin Population Breakdown By Race (Excluding...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Earth Town, Wisconsin Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/black-earth-town-wi-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Black Earth town by race. It includes the population of Black Earth town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Black Earth town across relevant racial categories.

    Key observations

    The percent distribution of Black Earth town population by race (across all racial categories recognized by the U.S. Census Bureau): 95.17% are white, 2.42% are Asian and 2.42% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Black Earth town
    • Population: The population of the racial category (excluding ethnicity) in the Black Earth town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Black Earth town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth town Population by Race & Ethnicity. You can refer the same here

  6. N

    Earth, TX annual median income by work experience and sex dataset: Aged 15+,...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Earth, TX annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a511d2a7-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Earth
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Earth. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Earth, the median income for all workers aged 15 years and older, regardless of work hours, was $37,763 for males and $16,019 for females.

    These income figures highlight a substantial gender-based income gap in Earth. Women, regardless of work hours, earn 42 cents for each dollar earned by men. This significant gender pay gap, approximately 58%, underscores concerning gender-based income inequality in the city of Earth.

    - Full-time workers, aged 15 years and older: In Earth, among full-time, year-round workers aged 15 years and older, males earned a median income of $49,236, while females earned $35,750, leading to a 27% gender pay gap among full-time workers. This illustrates that women earn 73 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Earth.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here

  7. M

    World Death Rate (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Death Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/death-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    World, World
    Description

    Historical chart and dataset showing World death rate by year from 1950 to 2025.

  8. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.

  9. N

    Black Earth Town, Wisconsin annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Earth Town, Wisconsin annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a503d4d8-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Black Earth town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Black Earth town, the median income for all workers aged 15 years and older, regardless of work hours, was $68,125 for males and $58,750 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 14%, indicating a significant disparity between the median incomes of males and females in Black Earth town. Women, regardless of work hours, still earn 86 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Black Earth town, among full-time, year-round workers aged 15 years and older, males earned a median income of $93,000, while females earned $78,542, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Black Earth town offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here

  10. N

    Earth, TX annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Earth, TX annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/earth-tx-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Earth
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Earth population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Earth, among individuals aged 15 years and older with income, there were 380 men and 236 women in the workforce. Among them, 217 men were engaged in full-time, year-round employment, while 79 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 8.29% fell within the income range of under $24,999, while 34.18% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 23.96% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here

  11. N

    Black Earth Town, Wisconsin annual income distribution by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Earth Town, Wisconsin annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9833d2-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Black Earth town. The dataset can be utilized to gain insights into gender-based income distribution within the Black Earth town population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Black Earth town, among individuals aged 15 years and older with income, there were 202 men and 148 women in the workforce. Among them, 118 men were engaged in full-time, year-round employment, while 63 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 6.78% fell within the income range of under $24,999, while none of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 39.83% of men in full-time roles earned incomes exceeding $100,000, while 36.51% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here

  12. N

    Lincoln township, Blue Earth County, Minnesota annual median income by work...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Lincoln township, Blue Earth County, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a5232bd6-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Lincoln Township, Blue Earth County
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Lincoln township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Lincoln township, the median income for all workers aged 15 years and older, regardless of work hours, was $49,792 for males and $23,500 for females.

    These income figures highlight a substantial gender-based income gap in Lincoln township. Women, regardless of work hours, earn 47 cents for each dollar earned by men. This significant gender pay gap, approximately 53%, underscores concerning gender-based income inequality in the township of Lincoln township.

    - Full-time workers, aged 15 years and older: In Lincoln township, among full-time, year-round workers aged 15 years and older, males earned a median income of $75,000, while females earned $56,250, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Lincoln township.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lincoln township median household income by race. You can refer the same here

  13. N

    Blue Earth County, MN annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Blue Earth County, MN annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/blue-earth-county-mn-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Blue Earth County
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Blue Earth County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Blue Earth County, the median income for all workers aged 15 years and older, regardless of work hours, was $42,075 for males and $27,496 for females.

    These income figures highlight a substantial gender-based income gap in Blue Earth County. Women, regardless of work hours, earn 65 cents for each dollar earned by men. This significant gender pay gap, approximately 35%, underscores concerning gender-based income inequality in the county of Blue Earth County.

    - Full-time workers, aged 15 years and older: In Blue Earth County, among full-time, year-round workers aged 15 years and older, males earned a median income of $61,546, while females earned $50,159, leading to a 19% gender pay gap among full-time workers. This illustrates that women earn 81 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Blue Earth County.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth County median household income by race. You can refer the same here

  14. Private Forest Wind Damage Assessment Spatial Database - May 2025

    • datasalsa.com
    • data.gov.ie
    shp
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture, Food and the Marine (2025). Private Forest Wind Damage Assessment Spatial Database - May 2025 [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=private-forest-wind-damage-assessment-spatial-database-may-2025
    Explore at:
    shpAvailable download formats
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Department of Agriculture, Food and the Marine
    Time period covered
    Jun 9, 2025
    Description

    Private Forest Wind Damage Assessment Spatial Database - May 2025. Published by Department of Agriculture, Food and the Marine. Available under the license Licence Not Specified (notspecified).Following Storm Darragh and Storm Éowyn during the winter of 2024/2025, and noting that many forests have been windblown around the country, Minister for Agriculture, Food and the Marine, Martin Heydon, and Minister of State for Forestry, Horticulture and Farm Safety, Michael Healy-Rae, invited key stakeholders to join department officials on a taskforce to ensure that storm-damaged forests were managed safely and appropriately. A Forestry Windblow Taskforce was set up to quantify forest damage and to identify approaches to facilitate the mobilisation of wind damaged timber.

    Part of the Taskforce’s work involved initiating a detailed mapping assessment using high-resolution satellite imagery to provide information at a local or forest stand level scale. The detailed assessment of windblow damage was undertaken using high resolution satellite imagery from SkySat, and supplemented with pre and post storm Sentinel-2 and PlanetScope satellite data. In addition, drone imagery was also acquired for a number of specific locations.

    The mapping exercise relied on the tasking of SkySat imagery during cloud-free weather conditions to acquire the necessary imagery data. The mapping was conducted largely between early February and the beginning of April 2025. The mapping effort focused on a target area of interest where the damage was deemed most likely to have occurred. These target areas were forests stands that were predominantly coniferous species and at least 15 years of age. These age and species criteria were used to filter both Coillte’s sub-compartment database and DAFM’s private forest dataset to confine the wind damage mapping exercise to the most relevant forests.

    The windblow mapping exercise utilised a range of available EO datasets of varying spatial and temporal resolution which included: SkySat: 75% (c. 0.50 m resolution), Sentinel-2/PlanetScope: 20% (c. 10 m resolution/c. 3 m resolution), and drone imagery: 5% ( c. 0.2 m resolution).

    The national estimate of private wind damage area (11,414 ha) as included in the private forest wind damage spatial database is within approximately +/- 500 hectares of the actual windblown private forest area. This uncertainty is due in part to the fact that for some parts of the country, SkySat satellite imagery has not yet been acquired. It is expected that there will be an ongoing refinement of the private forest windblow area estimate when new SkySat or other Earth Observation data becomes available over the coming months.

    As part of this mapping exercise, “older” windblown areas, i.e. windblown forest areas that are more than 4 years old, were also identified and mapped. It is estimated these damage forest areas represent between 750 and 1,000 hectares of the total national area estimate of private wind damaged forest.

    The area of wind damage in broadleaf stands may be greater than identified in the private forest wind damage database given the focus in the mapping exercise on coniferous species that were at least 15 years of age. This is also due in part to the fact that the identification of windblow in broadleaf stands is more challenging, particularly if the damage impacts individual trees.

    The output from the mapping assessment is an ESRI Shapefile polygon database of wind damaged, privately owned forest areas greater than or equal to 0.1 hectares. The Shapefile is provided in the Irish Transverse Mercator geographic coordinate system. The main attribute included the spatial database table is area in hectares for each wind damaged forest area delineated.

    These data are provisional in that they are a record of DAFM data holding in relation to private wind damaged forest at this time (May 2025). They are not published as legal definitions of the current actuality with regard to their geographic extent. They may contain errors and omissions and it should also be noted that the data cannot be taken as being absolutely current. Therefore they should be treated as indicative of the actual geographic situation. The Department of Agriculture, Food and the Marine will accept no liability for any loss or damage suffered by those using this data for any purpose whatsoever....

  15. Data for Revisiting the Last Ice Area Projections from a High-Resolution...

    • zenodo.org
    bin
    Updated Jan 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Madeleine Fol; Madeleine Fol (2025). Data for Revisiting the Last Ice Area Projections from a High-Resolution Global Earth System Model [Dataset]. http://doi.org/10.5281/zenodo.14042445
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 19, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Madeleine Fol; Madeleine Fol
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This dataset contains data used in the paper: Revisiting the Last Ice Area Projections from a High-Resolution Global Earth System Model - Fol et al (2025).

    Results are organized in excel files or numpy arrays with the dataset name, variable and ensemble member (for simulations) in the name of the file. See below for more information on what variables are included in the files and their structure.

    CESM_HR :

    • CESM_HR_SIAFluxes - per ensemble member: Timeseries of monthly SIA flux per gate.
    • CESM_HR_fluxesCAADiv.npy, _fluxesQEIDiv.npy, _fuxesQEIDivMeltSeason.npy : Timeseries of annual divergence over the Queen Elizabeth Islands and the Southern Canadian Arctic Archipelago derived from monthly SIA fluxes at the entry and exit gates.
    • CESM_HR_ThicknessDistribution.xlsx : Thickness distribution for the LIA-N, QEI, and CAA-S computed from the simulated thickness distribution (aicen001, aicen002, aicen003, aicen004, aicen005).
    • CESM_HR_tendencies - per ensemble member- per region (LIA-N, QEI, CAA-S). Timeseries of melt season integrated thermodynamic, dynamic (advection and ridging terms) sea ice area loss.
    • CESH_HR_sitPanArctic - per ensemble member: Timeseries of pan-Arctic mean may sea ice thickness.
    • CESM_HR_sieSept and CESM_HR_sieMarch - per ensemble member- per region (LIA-N, QEI, CAA-S) and pan-Arctic : Timeseries of March or September sea ice extent, sea ice area.
    • CESM_HR_sic - per ensemble member- per region (LIA-N, QEI, CAA-S): Timeseries of mean sea ice concentration for grid cells having more than 15% of SIC (no open water).
    • CESM_HR_meltSeason - per ensemble member- per region (LIA-N, QEI, CAA-S): Timeseries of annual freeze and melt onset dates allowing the definition of the melt season based on the thermodynamic sea ice area tendency crossing 0.
    • CESM_HR_mean_mayThickness.npy and CESM_HR_meanseptconc.npy: Results for map of the mean september sea ice concentration and may ice thickness for 1981-2000, 2001-2020, 2021-2040 and 2041-2060.

    CESM_LR :

    • CESM_LR_sieSept - per region (LIA-N, QEI, CAA-S) and pan-Arctic: Timeseries of September sea ice extent and sea ice area.
    • CESM_LR_sitPanArctic.xlsx: Timeseries of pan-Arctic mean May sea ice thickness.
    • CESM_LR_tendencies - per region (LIA-N, QEI, CAA-S). Timeseries of melt season integrated thermodynamic, dynamic (advection and ridging terms) sea ice area loss.
    • CESM_LR_meltSeason - per region (LIA-N, QEI, CAA-S): Timeseries of annual freeze and melt onset dates allowing the definition of the melt season based on the thermodynamic sea ice area tendency crossing 0.

    CESM2_LE:

    • CESM2_LE_CAA_sept, _LIAN_sept, _QEI_sept, panArctic: Mean September sea ice extent and sea ice area per region. There is one excel tab per ensemble member in each file.
    • CESM2_LE_pan_Arctic_hi_may: Pan-Arctic mean May sea ice thickness. There is one excel tab per ensemble member in each file.

    PIOMAS:

    • PIOMAS_panArctic_hi.xlsx: Timeseries of mean may sea ice thickness.
    • PIOMAS_mean_1981_2000_mean_mayThickness.npy : Results for map of the mean May ice thickness for 1981-2000 and 2001-2020.

    Observations:

    • CIS_marchSept_1982_1990_sie - per region (QEI and CAA-S) : Timeseries of March and September mean sea ice extent and area. CIS ice charts do not fully cover the LIA-N.
    • NSDICCDR_1979_2023_sia - per region (LIA-N, QEI, CAA-S) and pan-Arctic : Timeseries of March and September mean sea ice extent and area.
    • NSDICCDR_1981_2000_mean_septConc.npy: Results for map of the mean September sea ice concentration for 1981-2000 and 2001-2020.
    • NSDICCDR_1981_2000_LIAN_sic.xlsx: Timeseries of monthly mean sea ice concentration in the LIA-N.
    • NSDICCDR_1981_2000_QEI_sic.xlsx: Timeseries of monthly mean sea ice concentration in the QEI.

    These results are derived from the following datasets:

    • Ensemble members 1 and 3 of simulations from the high-resolution Community Earth System Model version 1.3 (CESM1.3-HR) produced for the International Laboratory for High-Resolution Earth System Prediction (iHESP) by the Qingdao National Laboratory for Marine Science and Technology (QNLM), Texas A&M University (TAMU), and the U.S. National Center for Atmospheric Research (NCAR). The lower resolution simulation is also used (CESM1.3-LR). (Chang et al., 2020; Zhang et al., 2020).
    • The 100-ensemble members Community Earth System Model (version 2) Large Ensemble (CESM2-LE) (Danabasoglu et al., 2020).
    • Satellite-derived monthly mean SIA fluxes through entry and exit gates of the CAA and Nares Strait (Howell et a., 2019; 2021; 2023; 2024; Smedsrud et al., 2017; Kwok, 2006).
    • The National Snow and Ice Data Center (NSIDC) Climate Data Record (CDR) (version 4) sea ice concentration, stored on a 25 x 25 km polar stereographic grid centered on the North Pole from 1979 to 2023 (Meier et al., 2021).
    • The gridded version of the regional Canadian Ice Service (CIS) Digital Archive ice charts from the Eastern and Western Arctic regions (Tivy et al., 2011).
    • The Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) assimilated sea ice concentration and derived ice thickness distribution estimates in the Arctic from 1978 to 2022 (Zhang et al., 2000).

  16. N

    Blue Earth County, MN annual income distribution by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Blue Earth County, MN annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/blue-earth-county-mn-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Blue Earth County
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Blue Earth County. The dataset can be utilized to gain insights into gender-based income distribution within the Blue Earth County population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Blue Earth County, among individuals aged 15 years and older with income, there were 27,065 men and 26,869 women in the workforce. Among them, 13,222 men were engaged in full-time, year-round employment, while 10,271 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 7.21% fell within the income range of under $24,999, while 13.32% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 19.80% of men in full-time roles earned incomes exceeding $100,000, while 8.16% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth County median household income by race. You can refer the same here

  17. Extreme poverty as share of global population in Africa 2025, by country

    • statista.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Extreme poverty as share of global population in Africa 2025, by country [Dataset]. https://www.statista.com/statistics/1228553/extreme-poverty-as-share-of-global-population-in-africa-by-country/
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Africa
    Description

    In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.

  18. The PRIMAP-hist national historical emissions time series (1750-2023) v2.6.1...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, nc, pdf +1
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Gütschow; Johannes Gütschow; Daniel Busch; Mika Pflüger; Mika Pflüger; Daniel Busch (2025). The PRIMAP-hist national historical emissions time series (1750-2023) v2.6.1 [Dataset]. http://doi.org/10.5281/zenodo.15016289
    Explore at:
    pdf, csv, nc, zip, binAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Johannes Gütschow; Johannes Gütschow; Daniel Busch; Mika Pflüger; Mika Pflüger; Daniel Busch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recommended citation

    Gütschow, J.; Busch, D.; Pflüger, M. (2024): The PRIMAP-hist national historical emissions time series v2.6.1 (1750-2023). zenodo. doi:10.5281/zenodo.15016289.

    Gütschow, J.; Jeffery, L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. (2016): The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571-603, doi:10.5194/essd-8-571-2016

    Content

    Abstract

    The PRIMAP-hist dataset combines several published datasets to create a comprehensive set of greenhouse gas emission pathways for every country and Kyoto gas, covering the years 1750 to 2023, and almost all UNFCCC (United Nations Framework Convention on Climate Change) member states as well as most non-UNFCCC territories. The data resolves the main IPCC (Intergovernmental Panel on Climate Change) 2006 categories. For CO2, CH4, and N2O subsector data for Energy, Industrial Processes and Product Use (IPPU), and Agriculture are available. The "country reported data priority" (CR) scenario of the PRIMAP-hist datset prioritizes data that individual countries report to the UNFCCC.

    For developed countries, AnnexI in terms of the UNFCCC, this is the data submitted anually in the "National Inventory Submissions". Until 2023 data was submitted in the "Common Reporting Format" (CRF). Since 2024 the new "Common Reporting Tables" (CRT) are used. For developing countries, non-AnnexI in terms of the UNFCCC, we use the "Biannial Transparency Reports" (BTR) which mostly come with data also using the "Common Reporting Tables". We also use older data available through the UNFCCC DI portal (di.unfccc.int) and additional country submissions from "Biannial Update Reports" (BUR), "National Communications" (NC), and "National Inventory Reports" (NIR) read from pdf and where available xls(x) or csv files. For a list of these submissions please see below. For South Korea the 2023 official GHG inventory has not yet been submitted to the UNFCCC but is included in PRIMAP-hist. PRIMAP-hist also includes official data for Taiwan which is not recognized as a party to the UNFCCC. We have mostly replaced the official data that has not been submitted to the UNFCCC used in v2.6 as countries have now submitted their data in CRT format, but had to make some exceptions as the CRT data was not usable for all countries.

    Gaps in the country reported data are filled using third party data such as CDIAC, EI (fossil CO2), Andrew cement emissions data (cement), FAOSTAT (agriculture), and EDGAR 2024 (all sectors for CO2, CH4, N2O, HFCs, PFCs, SF6, NF3, except energy CO2). Lower priority data are harmonized to higher priority data in the gap-filling process.

    For the third party priority time series gaps in the third party data are filled from country reported data sources.

    Data for earlier years which are not available in the above mentioned sources are sourced from EDGAR-HYDE, CEDS, and RCP (N2O only) historical emissions.

    The v2.4 release of PRIMAP-hist reduced the time-lag from 2 to 1 years for the October release. Thus the present version 2.6.1 includes data for 2023. For energy CO2 growth rates from the EI Statistical Review of World Energy are used to extend the country reported (CR) or CDIAC (TP) data to 2023. For CO2 from cement production Andrew cement data are used. For other gases and sectors we use EDGAR 2024 data. In a few cases we have to rely on numerical methods to estimate emissions for 2023.

    Version 2.6.1 of the PRIMAP-hist dataset does not include emissions from Land Use, Land-Use Change, and Forestry (LULUCF) in the main file. LULUCF data are included in the file with increased number of significant digits and have to be used with care as they are constructed from different sources using different methodologies and are not harmonized.

    The PRIMAP-hist v2.6.1 dataset is an updated version of

    Gütschow, J.; Pflüger, M.; Busch, D. (2024): The PRIMAP-hist national historical emissions time series v2.6 (1750-2023). zenodo. doi:10.5281/zenodo.13752654.

    The Changelog indicates the most important changes. You can also check the issue tracker on github.com/JGuetschow/PRIMAP-hist for additional information on issues found after the release of the dataset. Detailed per country information is available from the detailed changelog which is available on the primap.org website and on zenodo.

    Use of the dataset and full description

    Before using the dataset, please read this document and the article describing the methodology, especially the section on uncertainties and the section on limitations of the method and use of the dataset.

    Gütschow, J.; Jeffery, L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. (2016): The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571-603, doi:10.5194/essd-8-571-2016

    Please notify us (johannes.guetschow@climate-resource.com) if you use the dataset so that we can keep track of how it is used and take that into consideration when updating and improving the dataset.

    When using this dataset or one of its updates, please cite the DOI of the precise version of the dataset used and also the data description article which this dataset is supplement to (see above). Please consider also citing the relevant original sources when using the PRIMAP-hist dataset. See the full citations in the References section further below.

    Since version 2.3 we use the data formats developed for the PRIMAP2 climate policy analysis suite: PRIMAP2 on GitHub. The data are published both in the interchange format which consists of a csv file with the data and a yaml file with additional metadata and the native NetCDF based format. For a detailed description of the data format we refer to the PRIMAP2 documentation.

    We have also included files with more than three significant digits. These files are mainly aimed at people doing policy analysis using the country reported data scenario (HISTCR). Using the high precision data they can avoid questions on discrepancies with the reported data. The uncertainties of emissions data do not justify the additional significant digits and they might give a false sense of accuracy, so please use this version of the dataset with extra care.

    Support

    If you encounter possible errors or other things that should be noted, please check our issue tracker at github.com/JGuetschow/PRIMAP-hist and report your findings there. Please use the tag "v2.6.1" in any issue you create regarding this dataset.

    If you need support in using the dataset or have any other questions regarding the dataset, please contact johannes.guetschow@climate-resource.com.

    Climate Resource makes this data available CC BY 4.0 licence. Free support is limited to simple questions and non-commercial users. We also provide additional data, and data support services to clients wanting more frequent updates, additional metadata or to integrate these datasets into their workflows. Get in touch at contact@climate-resource.com if you are interested.

    Sources

    • Global CO2 emissions from cement production v250226 data, paper: Andrew
      (2025), Andrew (2019)
    • EI Statistical Review of World Energy website: Energy Institute (2024)
    • CDIAC data: Hefner and Marland (2023), data: Hefner (2024), paper: Gilfillan and Marland (2021)
    • CEDS: data: Hoesly et al. (2020), paper: Hoesly et al. (2018)
    • EDGAR 2024: data/website: European Commission, European Commision, JRC (2024), report: European Commission. Joint Research Centre & IEA. (2024)
    • EDGAR-HYDE 1.4 data: Van Aardenne et al. (2001), Olivier and Berdowski (2001)
    • FAOSTAT database data: Food and Agriculture Organization of the United Nations (2024)
    • RCP historical data data, paper: Meinshausen et al. (2011)
    • UNFCCC National Communications and National Inventory Reports for developing countries available from the UNFCCC DI portal <a

  19. Listening to the Kyrgyz Republic Survey 2021-2025 - Kyrgyz Republic

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2025). Listening to the Kyrgyz Republic Survey 2021-2025 - Kyrgyz Republic [Dataset]. https://microdata.worldbank.org/index.php/catalog/6523
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    Authors
    The World Bank
    Time period covered
    2021 - 2025
    Area covered
    Kyrgyzstan
    Description

    Abstract

    Since 2021, the Listening to the Kyrgyz Republic (L2KGZ) has been implemented by the World Bank with the support of the UK Government (FCDO) under the Effective Governance for Economic Development project. Around 1,500 households across the country regularly participate in the phone survey that is carried out every month. The L2KGZ collects information on public’s perception of overall socio-economic conditions and policy reforms, migration, employment, access to public service, household income, savings, food security, and coping mechanisms. That helps to inform the Government’s crucial decision-making for delivering essential social and economic reforms, implementing poverty reduction initiatives, and improving the well-being of citizens.

    Geographic coverage

    National, urban and rural

    Analysis unit

    Households Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample of the L2KGZ is a subsample of the 2021 baseline survey. The 2021 baseline survey was conducted face-to-face interviews with a nationally and urban/rural representative sample of 4,000 households from 200 PSU by random walk method. The PSU for the L2KGZ baseline survey were villages (ayyils) for rural areas, as well as streets for urban areas, which was the lowest-level of administrative unit in Kyrgyz Republic.

    The sample was distributed nationally in the Kyrgyz Republic using a standard 2-stage approach wherein stratification ensured sufficient sample distribution by region and rural/urban areas. Clusters were randomly selected proportionate to size, and households randomly selected within each cluster.

    The sampling plan of L2KGZ is represented at the national, regional (oblast), and urban/rural levels and based on official population data prepared and published by the National Statistical Committee of the Kyrgyz Republic (NSC). The sample was grouped into primary sampling units (PSUs), which are geographical areas - region and rural/urban areas. The consulting firm conducted 20 interviews in each PSU. Overall, the 200 PSUs sampled were divided according to the population size of each region, urban and rural areas. Then within each urban and rural area, each PSU was randomly selected with a probability proportional to size (PPS). In the baseline, households were asked to provide phone number of their most knowledgeable member for future contact during short phone interviews (CATI - Computer Assisted Telephone Interview).

    After completion of the 2021 baseline survey, L2KGZ monthly interviewers began regularly calling a randomly selected panel of 1,500 households over the phone to conduct short interviews, following a set monthly schedule agreed to by the participating household. Selection was conducted on the basis of the design for the baseline survey: either 5 or 6 households were selected in each PSU. This design ensured that the geographic spread of participants remained as dispersed as in the baseline survey, and minimized the intracluster correlation of respondent characteristics to the best extent possible.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Cleaning operations

    At the end of data collection, the raw dataset was cleaned by the Zerkalo with the support of the WB team. This included formatting, and correcting results based on monitoring issues, enumerator feedback and survey changes.

  20. N

    Blue Earth City Township, Minnesota annual median income by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Blue Earth City Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a5044ef4-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Blue Earth City Township
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Blue Earth City township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Blue Earth City township, the median income for all workers aged 15 years and older, regardless of work hours, was $51,875 for males and $38,036 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 27% between the median incomes of males and females in Blue Earth City township. With women, regardless of work hours, earning 73 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetownship of Blue Earth City township.

    - Full-time workers, aged 15 years and older: In Blue Earth City township, among full-time, year-round workers aged 15 years and older, males earned a median income of $62,083, while females earned $57,500, resulting in a 7% gender pay gap among full-time workers. This illustrates that women earn 93 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the township of Blue Earth City township.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Blue Earth City township.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth City township median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2024). United States Population [Dataset]. https://tradingeconomics.com/united-states/population

United States Population

United States Population - Historical Dataset (1900-12-31/2024-12-31)

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, csv, jsonAvailable download formats
Dataset updated
Dec 15, 2024
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 1900 - Dec 31, 2024
Area covered
United States
Description

The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu