51 datasets found
  1. Total population worldwide 1950-2100

    • ai-chatbox.pro
    • statista.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Total population worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  2. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  3. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  4. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 2, 2025
    Authors
    The Associated Press
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  5. A

    ‘World Population Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘World Population Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-world-population-data-9453/0454f7ef/?iid=004-217&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Analysis of ‘World Population Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kuntalmaity/world-population-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Population in the world is currently (2020) growing at a rate of around 1.05% per year (down from 1.08% in 2019, 1.10% in 2018, and 1.12% in 2017). The current average population increase is estimated at 81 million people per year. Annual growth rate reached its peak in the late 1960s, when it was at around 2%.

    --- Original source retains full ownership of the source dataset ---

  6. Standard populations dataset

    • kaggle.com
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Kleine (2023). Standard populations dataset [Dataset]. https://www.kaggle.com/datasets/matthiaskleine/standard-populations-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Matthias Kleine
    Description

    Do you know further standard populations?

    If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.

    German "Federal Health Monitoring System" about 'standard populations':

    "Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).

    Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:

    Which standard population is used for comparison basically, does not matter. It is important, however, that

    1. the demographic structure of the standard population is not too dissimilar to that of the reference population and
    2. the comparable rates refer to the same standard."

    Aim of this dataset

    The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.

    Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System

    • standard_populations_19_age_groups.csv
      • 19 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85+'
      • 15 standard populations: '1940 U.S. Std Million', '1950 U.S. Std Million', '1960 U.S. Std Million', '1970 U.S. Std Million', '1980 U.S. Std Million', '1990 U.S. Std Million', '1991 Canadian Std Million', '1996 Canadian Std Million', '2000 U.S. Std Million', '2000 U.S. Std Population (Census P25-1130)', '2011 Canadian Standard Population', 'European (EU-27 plus EFTA 2011-2030) Std Million', 'European (Scandinavian 1960) Std Million', 'World (Segi 1960) Std Million', 'World (WHO 2000-2025) Std Million'
      • source: National Institutes of Health, National Cancer Institute, Surveillance, Epidemiology, and End Results Program

    Terms of use

    No restrictions are known to the author. Standard populations are published by different organisations for public usage.

  7. Covid19 Dataset

    • kaggle.com
    Updated May 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shailesh Dwivedi (2020). Covid19 Dataset [Dataset]. https://www.kaggle.com/baba4121/covid19-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shailesh Dwivedi
    Description

    Context

    As the world is fighting against this invisible enemy a lot of data-driven students like me want to study it as well as we can. There is an enormous number of data set available on covid19 today but as a beginner, in this field, I wanted to find some more simple data. So here I come up with this covid19 data set which I scrapped from "https://www.worldometers.info/coronavirus". It is my way of learning by doing. This data is till 5/17/2020. I will keep on updating it.

    Content

    The dataset contains 194 rows and 12 columns which are described below:-

    Country: Contains the name of all Countries. Total_Cases: It contains the total number of cases the country has till 5/17/2020. Total_Deaths: Total number of deaths in that country till 5/17/2020. Total_Recovered: Total number of individuals recovered from covid19. Active_Cases: Total active cases in the country on 5/17/2020. Critical_Cases: Number of patients in critical condition. Cases/Million_Population: Number of cases per million population of that country. Deaths/Million_Population: Number of deaths per million population of that country. Total_Tests: Total number of tests performed 5/17/2020 Tests/Million_Population: Number of tests performed per million population. Population: Population of the country Continent: Continent in which the country lies.

    Acknowledgements

    "https://www.worldometers.info/coronavirus/"

  8. u

    ICARUS Chamber Experiment: 2014 FIXCIT Study_20140111_nitric...

    • rda.ucar.edu
    • data.ucar.edu
    • +2more
    Updated Jul 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ICARUS Chamber Experiment: 2014 FIXCIT Study_20140111_nitric oxide/ALPHA-PINENE/hydrogen peroxide_Hydroxyl radical_No Seed_Alpha-pinene + OH, high NO, dry, (NH4)2SO4 seed at end [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Dataset updated
    Jul 15, 2022
    Description

    Goals: High NO oxidation of alpha-pinene to test products. Interested mainly in: organic nitrate yield from alpha-pinene at the high NO limit -products formed in high NO oxidation of alpha-pinene to confirm for CIMS instruments what potential products formed in SOAS -potential contribution of alpha-pinene derived nitrates to particle phase nitrates seen at SOAS. Secondary goals: potential effect of addition of seed aerosol on apparent loss rate of gas-phase compounds Summary: The initial measurements of alpha -pinene and alkyl nitrates appeared to go well for PTR-MS and TD-LIF. Ozone began creeping up about ~30min into the experiment, reaching a maximum < 90 ppbv O3. NO was injected in after about an hour and 15 minutes after lights on to titrate out the ozone. Particle nucleation was observed roughly ~1hr 15min into the oxidation, potentially from an OH spike from the NO injection due to PNA buildup. After 08 ~5hrs of oxidation, the lights were turned off. Thirty minutes of dark sampling followed, at which point ammonium sulfate seed was injected into the chamber to determine what effect, if any, this will have on wall-loss of various species. ... Organization: 2014 FIXCIT Study Lab Affiliation: California Institute of Technology Chamber: Seinfeld chambers Experiment Category: Gas phase chemical reaction Oxidant: Hydroxyl radical Reactants: nitric oxide, ALPHA-PINENE, hydrogen peroxide Reaction Type: Photooxidation Relative Humidity: 5 Temperature: 26 Seed Name: No Seed Pressure: 755

  9. Number of internet users worldwide 2014-2029

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of internet users worldwide 2014-2029 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.

  10. Rural Access Index by Country (2022 - 2023)

    • sdg-transformation-center-sdsn.hub.arcgis.com
    Updated Apr 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2023). Rural Access Index by Country (2022 - 2023) [Dataset]. https://sdg-transformation-center-sdsn.hub.arcgis.com/datasets/d386abdab7d946aa8b1a0cd11496d91f
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    Sustainable Development Solutions Networkhttps://www.unsdsn.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    The Rural Access Index (RAI) is a measure of access, developed by the World Bank in 2006. It was adopted as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015, to measure the accessibility of rural populations. It is currently the only indicator for the SDGs that directly measures rural access.The RAI measures the proportion of the rural population that lives within 2 km of an all-season road. An all-season road is one that is motorable all year, but may be temporarily unavailable during inclement weather (Roberts, Shyam, & Rastogi, 2006). This dataset implements and expands on the most recent official methodology put forward by the World Bank, ReCAP's 2019 RAI Supplemental Guidelines. This is, to date, the only publicly available application of this method at a global scale.MethodologyReCAP's methodology provided new insight on what makes a road all-season and how this data should be handled: instead of removing unpaved roads from the network, the ones that are classified as unpaved are to be intersected with topographic and climatic conditions and, whenever there’s an overlap with excess precipitation and slope, a multiplying factor ranging from 0% to 100% is applied to the population that would access to that road. This present dataset developed by SDSN's SDG Transformation Centre proposes that authorities ability to maintain and remediate road conditions also be taken into account.Data sourcesThe indicator relies on four major items of geospatial data: land cover (rural or urban), population distribution, road network extent and the “all-season” status of those roads.Land cover data (urban/rural distinction)Since the indicator measures the acess rural populations, it's necessary to define what is and what isn't rural. This dataset uses the DegUrba Methodology, proposed by the United Nations Expert Group on Statistical Methodology for Delineating Cities and Rural Areas (United Nations Expert Group, 2019). This approach has been developed by the European Commission Global Human Settlement Layer (GHSL-SMOD) project, and is designed to instil some consistency into the definitions based on population density on a 1-km grid, but adjusted for local situations.Population distributionThe source for population distribution data is WorldPop. This uses national census data, projections and other ancillary data from countries to produce aggregated, 100 m2 population data. Road extentTwo widely recognized road datasets are used: the real-time updated crowd-sourced OpenStreetMap (OSM) or the GLOBIO’s 2018 GRIP database, which draws data from official national sources. The reasons for picking the latter are mostly related to its ability to provide information on the surface (pavement) of these roads, to the detriment of the timeliness of the data, which is restrained to the year 2018. Additionally, data from Microsoft Bing's recent Road Detection project is used to ensure completeness. This dataset is completely derived from machine learning methods applied over satellite imagery, and detected 1,165 km of roads missing from OSM.Roads’ all-season statusThe World Bank's original 2006 methodology defines the term all-season as “… a road that is motorable all year round by the prevailing means of rural transport, allowing for occasional interruptions of short duration”. ReCAP's 2019 methodology makes a case for passability equating to the all-season status of a road, along with the assumption that typically the wet season is when roads become impassable, especially so in steep roads that are more exposed to landslides.This dataset follows the ReCAP methodology by creating an passability index. The proposed use of passability factors relies on the following three aspects:• Surface type. Many rural roads in LICs (and even in large high-income countries including the USA and Australia) are unpaved. As mentioned before, unpaved roads deteriorate rapidly and in a different way to paved roads. They are very susceptible to water ingress to the surface, which softens the materials and makes them very vulnerable to the action of traffic. So, when a road surface becomes saturated and is subject to traffic, the deterioration is accelerated. • Climate. Precipitation has a significant effect on the condition of a road, especially on unpaved roads, which predominate in LICs and provide much of the extended connectivity to rural and poor areas. As mentioned above, the rainfall on a road is a significant factor in its deterioration, but the extent depends on the type of rainfall in terms of duration and intensity, and how well the roadside drainage copes with this. While ReCAP suggested the use of general climate zones, we argue that better spatial and temporal resolutions can be acquired through the Copernicus Programme precipitation data, which is made available freely at ~30km pixel size for each month of the year.• Terrain. The gradient and altitude of roads also has an effect on their accessibility. Steep roads become impassable more easily due to the potential for scour during heavy rainfall, and also due to slipperiness as a result of the road surface materials used. Here this is drawn from slope calculated from SRTM Digital Terrain data.• Road maintenance. The ability of local authorities to remediate damaged caused by precipitation and landslides is proposed as a correcting factor to the previous ones. Ideally this would be measured by the % of GDP invested in road construction and maintenance, but this isn't available for all countries. For this reason, GDP per capita is adopted as a proxy instead. The data range is normalized in such a way that a road maxed out in terms of precipitation and slope (accessibility score of 0.25) in a country at the top of the GDP per capita range is brought back at to the higher end of the accessibility score (0.95), while the accessibility score of a road meeting the same passability conditions in a country which GDP per capita is towards the lower end is kept unchanged.Data processingThe roads from the three aforementioned datasets (Bing, GRIP and OSM) are merged together to them is applied a 2km buffer. The populations falling exclusively on unpaved road buffers are multiplied by the resulting passability index, which is defined as the normalized sum of the aforementioned components, ranging from 0.25 to. 0.9, with 0.95 meaning 95% probability that the road is all-season. The index applied to the population data, so, when calculated, the RAI includes the probability that the roads which people are using in each area will be all-season or not. For example, an unpaved road in a flat area with low rainfall would have an accessibility factor of 0.95, as this road is designed to be accessible all year round and the environmental effects on its impassability are minimal.The code for generating this dataset is available on Github at: https://github.com/sdsna/rai

  11. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  12. M

    World Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

  13. m

    Data from: MonkeyPox2022Tweets: The First Public Twitter Dataset on the 2022...

    • data.mendeley.com
    Updated Jul 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur (2022). MonkeyPox2022Tweets: The First Public Twitter Dataset on the 2022 MonkeyPox Outbreak [Dataset]. http://doi.org/10.17632/xmcg82mx9k.3
    Explore at:
    Dataset updated
    Jul 25, 2022
    Authors
    Nirmalya Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite the following paper when using this dataset: N. Thakur, “MonkeyPox2022Tweets: The first public Twitter dataset on the 2022 MonkeyPox outbreak,” Preprints, 2022, DOI: 10.20944/preprints202206.0172.v2

    Abstract The world is currently facing an outbreak of the monkeypox virus, and confirmed cases have been reported from 28 countries. Following a recent “emergency meeting”, the World Health Organization just declared monkeypox a global health emergency. As a result, people from all over the world are using social media platforms, such as Twitter, for information seeking and sharing related to the outbreak, as well as for familiarizing themselves with the guidelines and protocols that are being recommended by various policy-making bodies to reduce the spread of the virus. This is resulting in the generation of tremendous amounts of Big Data related to such paradigms of social media behavior. Mining this Big Data and compiling it in the form of a dataset can serve a wide range of use-cases and applications such as analysis of public opinions, interests, views, perspectives, attitudes, and sentiment towards this outbreak. Therefore, this work presents MonkeyPox2022Tweets, an open-access dataset of Tweets related to the 2022 monkeypox outbreak that were posted on Twitter since the first detected case of this outbreak on May 7, 2022. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter, as well as with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.

    Data Description The dataset consists of a total of 255,363 Tweet IDs of the same number of tweets about monkeypox that were posted on Twitter from 7th May 2022 to 23rd July 2022 (the most recent date at the time of dataset upload). The Tweet IDs are presented in 6 different .txt files based on the timelines of the associated tweets. The following provides the details of these dataset files. • Filename: TweetIDs_Part1.txt (No. of Tweet IDs: 13926, Date Range of the Tweet IDs: May 7, 2022 to May 21, 2022) • Filename: TweetIDs_Part2.txt (No. of Tweet IDs: 17705, Date Range of the Tweet IDs: May 21, 2022 to May 27, 2022) • Filename: TweetIDs_Part3.txt (No. of Tweet IDs: 17585, Date Range of the Tweet IDs: May 27, 2022 to June 5, 2022) • Filename: TweetIDs_Part4.txt (No. of Tweet IDs: 19718, Date Range of the Tweet IDs: June 5, 2022 to June 11, 2022) • Filename: TweetIDs_Part5.txt (No. of Tweet IDs: 47718, Date Range of the Tweet IDs: June 12, 2022 to June 30, 2022) • Filename: TweetIDs_Part6.txt (No. of Tweet IDs: 138711, Date Range of the Tweet IDs: July 1, 2022 to July 23, 2022)

    The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used.

  14. d

    The Marshall Project: COVID Cases in Prisons

    • data.world
    csv, zip
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). The Marshall Project: COVID Cases in Prisons [Dataset]. https://data.world/associatedpress/marshall-project-covid-cases-in-prisons
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 6, 2023
    Authors
    The Associated Press
    Time period covered
    Jul 31, 2019 - Aug 1, 2021
    Description

    Overview

    The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.

    Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.

    In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.

    This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.

    Methodology and Caveats

    The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.

    Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.

    The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.

    To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.

    To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.

    To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.

    As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.

    Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.

    About the Data

    There are four tables in this data:

    • covid_prison_cases.csv contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.

    • prison_populations.csv contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.

    • staff_populations.csv contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.

    • covid_prison_rates.csv contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National totals.

    Queries

    The Associated Press and The Marshall Project have created several queries to help you use this data:

    Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here

    Rank all systems' most recent data by cases per 100,000 prisoners here

    Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here

    Attribution

    In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”

    Contributors

    Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.

    Questions

    If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  15. i

    The ecological effects of linear infrastructure and traffic. - Dataset -...

    • iepnb.es
    • pre.iepnb.es
    Updated Apr 12, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). The ecological effects of linear infrastructure and traffic. - Dataset - CKAN [Dataset]. https://iepnb.es/catalogo/dataset/the-ecological-effects-of-linear-infrastructure-and-traffic1
    Explore at:
    Dataset updated
    Apr 12, 2015
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Roads, railways and utility easements are integral components of human society, allowing for the safe and efficient transport of people and goods. There are few places on earth that are not currently traversed or impacted by the vast networks of linear infrastructure. The ecological impacts of linear infrastructure and vehicles are numerous, diverse and, in most cases, deleterious. Recognition and amelioration of these impacts is becoming widespread around the world, and new roads and other linear infrastructure are increasingly planned to avoid high-quality areas and designed to minimise or mitigate the deleterious effects. Importantly, the negative effects of the existing infrastructure are also being reduced during routine maintenance and upgrade projects, as well as targeted retrofits to fix specific problem areas. (1) Global road length, number of vehicles and rate of per capita travel are high and predicted to increase significantly over the next few decades.(2) The ‘road-effect zone’ is a useful conceptual framework to quantify the negative ecological and environmental impacts of roads and traffic.(3) The effects of roads and traffic on wildlife are numerous, varied and typically deleterious. (4) The density and configuration of road networks are important considerations in road planning. (5) The costs to society of wildlife-vehicle collisions can be high. (6) The strategies of avoidance, minimisation, mitigation and offsetting are increasingly being adopted around the world – but it must be recognised that some impacts are unavoidable and unmitigable. (7) Road ecology is an applied science which underpins the quantification and mitigation of road impacts. The global rates of road construction and private vehicle ownership as well as travel demand will continue to rise for the foreseeable future, including at a rapid rate in many developing countries. The challenge currently facing society is to build a more efficient transportation system that facilitates economic growth and development, reduces environmental impacts and protects biodiversity and ecosystem functions. The legacy of the decisions we make today and the roads and railways we construct tomorrow will be with us for many years to come.

  16. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 26, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

  17. Z

    The PRIMAP-hist national historical emissions time series (1750-2023) v2.6.1...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Busch, Daniel (2025). The PRIMAP-hist national historical emissions time series (1750-2023) v2.6.1 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4479171
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Gütschow, Johannes
    Pflüger, Mika
    Busch, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recommended citation

    Gütschow, J.; Busch, D.; Pflüger, M. (2024): The PRIMAP-hist national historical emissions time series v2.6.1 (1750-2023). zenodo. doi:10.5281/zenodo.15016289.

    Gütschow, J.; Jeffery, L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. (2016): The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571-603, doi:10.5194/essd-8-571-2016

    Content

    Use of the dataset and full description

    Abstract

    Support

    Sources

    Files included in the dataset

    Notes

    Data format description (columns)

    References

    Changelog

    Abstract

    The PRIMAP-hist dataset combines several published datasets to create a comprehensive set of greenhouse gas emission pathways for every country and Kyoto gas, covering the years 1750 to 2023, and almost all UNFCCC (United Nations Framework Convention on Climate Change) member states as well as most non-UNFCCC territories. The data resolves the main IPCC (Intergovernmental Panel on Climate Change) 2006 categories. For CO2, CH4, and N2O subsector data for Energy, Industrial Processes and Product Use (IPPU), and Agriculture are available. The "country reported data priority" (CR) scenario of the PRIMAP-hist datset prioritizes data that individual countries report to the UNFCCC.

    For developed countries, AnnexI in terms of the UNFCCC, this is the data submitted anually in the "National Inventory Submissions". Until 2023 data was submitted in the "Common Reporting Format" (CRF). Since 2024 the new "Common Reporting Tables" (CRT) are used. For developing countries, non-AnnexI in terms of the UNFCCC, we use the "Biannial Transparency Reports" (BTR) which mostly come with data also using the "Common Reporting Tables". We also use older data available through the UNFCCC DI portal (di.unfccc.int) and additional country submissions from "Biannial Update Reports" (BUR), "National Communications" (NC), and "National Inventory Reports" (NIR) read from pdf and where available xls(x) or csv files. For a list of these submissions please see below. For South Korea the 2023 official GHG inventory has not yet been submitted to the UNFCCC but is included in PRIMAP-hist. PRIMAP-hist also includes official data for Taiwan which is not recognized as a party to the UNFCCC. We have mostly replaced the official data that has not been submitted to the UNFCCC used in v2.6 as countries have now submitted their data in CRT format, but had to make some exceptions as the CRT data was not usable for all countries.

    Gaps in the country reported data are filled using third party data such as CDIAC, EI (fossil CO2), Andrew cement emissions data (cement), FAOSTAT (agriculture), and EDGAR 2024 (all sectors for CO2, CH4, N2O, HFCs, PFCs, SF6, NF3, except energy CO2). Lower priority data are harmonized to higher priority data in the gap-filling process.

    For the third party priority time series gaps in the third party data are filled from country reported data sources.

    Data for earlier years which are not available in the above mentioned sources are sourced from EDGAR-HYDE, CEDS, and RCP (N2O only) historical emissions.

    The v2.4 release of PRIMAP-hist reduced the time-lag from 2 to 1 years for the October release. Thus the present version 2.6.1 includes data for 2023. For energy CO2 growth rates from the EI Statistical Review of World Energy are used to extend the country reported (CR) or CDIAC (TP) data to 2023. For CO2 from cement production Andrew cement data are used. For other gases and sectors we use EDGAR 2024 data. In a few cases we have to rely on numerical methods to estimate emissions for 2023.

    Version 2.6.1 of the PRIMAP-hist dataset does not include emissions from Land Use, Land-Use Change, and Forestry (LULUCF) in the main file. LULUCF data are included in the file with increased number of significant digits and have to be used with care as they are constructed from different sources using different methodologies and are not harmonized.

    The PRIMAP-hist v2.6.1 dataset is an updated version of

    Gütschow, J.; Pflüger, M.; Busch, D. (2024): The PRIMAP-hist national historical emissions time series v2.6 (1750-2023). zenodo. doi:10.5281/zenodo.13752654.

    The Changelog indicates the most important changes. You can also check the issue tracker on github.com/JGuetschow/PRIMAP-hist for additional information on issues found after the release of the dataset. Detailed per country information is available from the detailed changelog which is available on the primap.org website and on zenodo.

    Use of the dataset and full description

    Before using the dataset, please read this document and the article describing the methodology, especially the section on uncertainties and the section on limitations of the method and use of the dataset.

    Gütschow, J.; Jeffery, L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. (2016): The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571-603, doi:10.5194/essd-8-571-2016

    Please notify us (johannes.guetschow@climate-resource.com) if you use the dataset so that we can keep track of how it is used and take that into consideration when updating and improving the dataset.

    When using this dataset or one of its updates, please cite the DOI of the precise version of the dataset used and also the data description article which this dataset is supplement to (see above). Please consider also citing the relevant original sources when using the PRIMAP-hist dataset. See the full citations in the References section further below.

    Since version 2.3 we use the data formats developed for the PRIMAP2 climate policy analysis suite: PRIMAP2 on GitHub. The data are published both in the interchange format which consists of a csv file with the data and a yaml file with additional metadata and the native NetCDF based format. For a detailed description of the data format we refer to the PRIMAP2 documentation.

    We have also included files with more than three significant digits. These files are mainly aimed at people doing policy analysis using the country reported data scenario (HISTCR). Using the high precision data they can avoid questions on discrepancies with the reported data. The uncertainties of emissions data do not justify the additional significant digits and they might give a false sense of accuracy, so please use this version of the dataset with extra care.

    Support

    If you encounter possible errors or other things that should be noted, please check our issue tracker at github.com/JGuetschow/PRIMAP-hist and report your findings there. Please use the tag "v2.6.1" in any issue you create regarding this dataset.

    If you need support in using the dataset or have any other questions regarding the dataset, please contact johannes.guetschow@climate-resource.com.

    Climate Resource makes this data available CC BY 4.0 licence. Free support is limited to simple questions and non-commercial users. We also provide additional data, and data support services to clients wanting more frequent updates, additional metadata or to integrate these datasets into their workflows. Get in touch at contact@climate-resource.com if you are interested.

    Sources

    Global CO2 emissions from cement production v250226 data, paper: Andrew(2025), Andrew (2019)

    EI Statistical Review of World Energy website: Energy Institute (2024)

    CDIAC data: Hefner and Marland (2023), data: Hefner (2024), paper: Gilfillan and Marland (2021)

    CEDS: data: Hoesly et al. (2020), paper: Hoesly et al. (2018)

    EDGAR 2024: data/website: European Commission, European Commision, JRC (2024), report: European Commission. Joint Research Centre & IEA. (2024)

    EDGAR-HYDE 1.4 data: Van Aardenne et al. (2001), Olivier and Berdowski (2001)

    FAOSTAT database data: Food and Agriculture Organization of the United Nations (2024)

    RCP historical data data, paper: Meinshausen et al. (2011)

    UNFCCC National Communications and National Inventory Reports for developing countries available from the UNFCCC DI portal website, data: UNFCCC (2024e), Pflüger and Gütschow (2024), github

    UNFCCC Bnnial Update Reports, National Communications, and National Inventory Reports for developing countries website-BURs, website-NCs, data: UNFCCC (2024d), UNFCCC (2024b).

    Notes:

    Not all BUR and NC submissions are included as reading the data is time consuming and not all submission contain sufficient data to be used in PRIMAP-hist.

    Not all submissions included in PRIMAP-hist are available in the github repository as we do not (yet) have code that we can publish for all submissions.

    No submissions have been added for PRIMAP-hist v2.6.1

    UNFCCC First Biannial Transparency Reports website, [data] UNFCCC (2025)

    Notes:

    For a list of added submissions see section "Data source updates (v2.6.1)" in the changelog in the pdf data description.

    UNFCCC Common Reporting Format (CRF) website, paper, data (24-01-08): UNFCCC (2024c) (processed as described in Jeffery et al. (2018))

    Official country repositories (non-UNFCCC)

    Belarus: Greenhouse gas statistics (1990-2022) website: National Statistical Committee of theRepublic of Belarus (2024)

    EU, Iceland, Norway, Switzerland: National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism, April 2024 website: European Environment Agency(2024)

    South Korea: 2023 Inventory website, data: Republic of Korea (2023)

    Taiwan / Republic of China: 2023 Inventory website, data: Republic of China - EnvironmentalProtection Administration (2023)

    For the pre-1990 LULUCF time-series we use the following additional data sources:

    Houghton land use CO2 website: Houghton (2008)

    HYDE land cover data website: Klein Goldewijk et al. (2010), Klein Goldewijk et al. (2011)

    SAGE Global Potential Vegetation Dataset website: Ramankutty and Foley (1999)

    FAO Country Boundaries website: Food and Agriculture Organization of the United Nations(2015)

    Files included in the dataset

    For each dataset we have three files:

  18. d

    Public Health Official Departures

    • data.world
    csv, zip
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2022). Public Health Official Departures [Dataset]. https://data.world/associatedpress/public-health-official-departures
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 7, 2022
    Authors
    The Associated Press
    Description

    Changelog:

    Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.

    Overview

    Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.

    In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.

    According to experts, that is the largest exodus of public health leaders in American history.

    Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.

    The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.

    Findings

    The AP and KHN found that:

    • One in five Americans live in a community that has lost its local public health department leader during the pandemic
    • Top public health officials in 28 states have left state-level departments ## Using this data To filter for data specific to your state, use this query

    To get total numbers of exits by state, broken down by state and local departments, use this query

    Methodology

    KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.

    The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.

    Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.

    The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.

    Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.

    Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.

    KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.

    Attribution

    Findings and the data should be cited as: "According to a KHN and Associated Press report."

    Is Data Missing?

    If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.

  19. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  20. People living in extreme poverty (World Data Lab)

    • sdgstoday-sdsn.hub.arcgis.com
    Updated Feb 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2022). People living in extreme poverty (World Data Lab) [Dataset]. https://sdgstoday-sdsn.hub.arcgis.com/datasets/people-living-in-extreme-poverty-world-data-lab-1
    Explore at:
    Dataset updated
    Feb 5, 2022
    Dataset authored and provided by
    Sustainable Development Solutions Networkhttps://www.unsdsn.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dashboard is part of SDGs Today. Please see sdgstoday.orgExtreme poverty poses a major challenge to the livelihood of current and future generations everywhere and threatens Agenda 2030’s promise of leaving no one behind. The World Poverty Clock developed by the World Data Lab provides real-time poverty estimates through 2030 for nearly all countries. The World Poverty Clock uses publicly available data on income distributions, production factors, and household consumption provided by various international organizations, including the World Bank and the International Monetary Fund (IMF). These organizations compile data provided to them by the local governments, and when this information is not available, the World Poverty Clock uses specific models to estimate poverty in these countries. The models include how individual incomes might change over time using IMF growth forecasts for the medium-term complemented by long-term “shared socio-economic pathways” developed by the International Institute for Applied Systems Analysis (IIASA) and similar analysis developed by the OECD. The World Poverty Clock dataset was updated in February 2021, taking into consideration the COVID-19 pandemic effects on the economy.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista Research Department (2025). Total population worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
Organization logo

Total population worldwide 1950-2100

Explore at:
Dataset updated
Apr 8, 2025
Dataset provided by
Statistahttp://statista.com/
Authors
Statista Research Department
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu