Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population ages 0-14 (% of total population) in World was reported at 24.73 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population ages 0-14 (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Hope population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New Hope. The dataset can be utilized to understand the population distribution of New Hope by age. For example, using this dataset, we can identify the largest age group in New Hope.
Key observations
The largest age group in New Hope, AL was for the group of age 10 to 14 years years with a population of 352 (12.16%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in New Hope, AL was the 75 to 79 years years with a population of 19 (0.66%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Hope Population by Age. You can refer the same here
Families of tax filers; Census families with children by age of children and children by age groups (final T1 Family File; T1FF).
Estimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population ages 0-14 (% of total population) in United States was reported at 17.59 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Population ages 0-14 (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Population: Age 0 to 14 data was reported at 222.400 Person mn in 2024. This records a decrease from the previous number of 230.630 Person mn for 2023. China Population: Age 0 to 14 data is updated yearly, averaging 259.610 Person mn from Dec 1953 (Median) to 2024, with 39 observations. The data reached an all-time high of 341.456 Person mn in 1982 and a record low of 213.312 Person mn in 1953. China Population: Age 0 to 14 data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
For questions, please contact Ask SRRG (eocevent394@cdc.gov).
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Ages 0 to 14 for the United States (SPPOP0014TOZSUSA) from 1960 to 2023 about 0 to 14 years, population, and USA.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset includes the number of people enrolled in DSS services by town and by age group from CY 2015-2024. To view the full dataset and filter the data, click the "View Data" button at the top right of the screen. More data on people served by DSS can be found here.
About this data
Notes by year 2021 In March 2020, Connecticut opted to add a new Medicaid coverage group: the COVID-19 Testing Coverage for the Uninsured. Enrollment data on this limited-benefit Medicaid coverage group is being incorporated into Medicaid data effective January 1, 2021.
Enrollment data for this coverage group prior to January 1, 2021, was listed under State Funded Medical. An historical accounting of enrollment of the specific coverage group starting in calendar year 2020 will also be published separately.
2018 On April 22, 2019 the methodology for determining HUSKY A Newborn recipients changed, which caused an increase of recipients for that benefit starting in October 2016. We now count recipients recorded in the ImpaCT system as well as in the HIX system for that assistance type, instead using HIX exclusively.
Also, the methodology for determining the address of the recipients changed: 1. The address of a recipient in the ImpaCT system is now correctly determined specific to that month instead of using the address of the most recent month. This resulted in some shuffling of the recipients among townships starting in October 2016.
On February 14, 2019 the enrollment counts for 2012-2015 across all programs were updated to account for an error in the data integration process. As a result, the count of the number of people served increased by 13% for 2012, 10% for 2013, 8% for 2014 and 4% for 2015. Counts for 2016, 2017 and 2018 remain unchanged.
On January 16, 2019 these counts were revised to count a recipient in all locations that recipient resided in that year.
On January 1, 2019 the counts were revised to count a recipient in only one town per year even when the recipient moved within the year. The most recent address is used.
The 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).
The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members
The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.
The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.
A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
The AIAN Summary File contains data on population characteristics, such as sex, age, average household size, household type, and relationship to householder. The American Indian and Alaska Native Summary File (AIANSF) contains data on population characteristics, such as sex, age, average household size, household type, and relationship to householder. The file also includes housing characteristics, such as tenure (whether a housing unit is owner-occupied or renter- occupied) and age of householder for occupied housing units. Selected aggregates and medians also are provided. A complete listing of subjects in the AIANSF is found in Chapter 3, Subject Locator. The layout of the tables in the AIANSF is similar to that in Summary File 2 (SF 2). These data are presented in 47 population tables (identified with a "PCT") and 14 housing tables (identified with an "HCT") shown down to the census tract level; and 10 population tables (identified with a "PCO") shown down to the county level, for a total of 71 tables. Each table is iterated for the total population, the total American Indian and Alaska Native population alone, the total American Indian and Alaska Native population alone or in combination, and 1,567 detailed tribes and tribal groupings. Tribes or tribal groupings are included on the iterations list if they met a threshold of at least 100 people in the 2010 Census. In addition, the presentation of AIANSF tables for any of the tribes and tribal groupings is subject to a population threshold of 100 or more people in a given geography. That is, if there are fewer than 100 people in a specific population group in a specific geographic area, their population and housing characteristics data are not available for that geographic area in the AIANSF. See Appendix H, Characteristic Iterations, for more information.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes
Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status
Dataset and data visualization details:
These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.
Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.
Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.
Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.
Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.
Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.
Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.
Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.
References
Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.
Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Probability of Dying at Age 10-14 Years: per 1000 data was reported at 2.700 Ratio in 2019. This records a decrease from the previous number of 2.800 Ratio for 2018. India IN: Probability of Dying at Age 10-14 Years: per 1000 data is updated yearly, averaging 4.950 Ratio from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 6.900 Ratio in 1990 and a record low of 2.700 Ratio in 2019. India IN: Probability of Dying at Age 10-14 Years: per 1000 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Probability of dying between age 10-14 years of age expressed per 1,000 adolescents age 10, if subject to age-specific mortality rates of the specified year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
These boundaries were developed by the Department of Planning based on 2020 Census data. Be aware that other organizations may use different neighborhood boundaries in their analyses.Demographics included are: race, ethnicity, gender, vacancy rate, homeowner status, family structure, and age.DATA DICTIONARY:
Field Name
Description
Name
Name of neighborhood statistical area
Population
Total population (P3)
White
White alone population (P3)
Blk_AfAm
Black or African American alone population (P3)
AmInd_AkNa
American Indian/Native Alaskan alone population (P3)
Asian
Asian alone population (P3)
NatHaw_Pac
Native Hawaiian and other Pacific Islander alone population (P3)
Other_Race
Some other race alone population (P3)
TwoOrMore
Two or more races population (P3)
Hisp_Lat
Hispanic or Latino population (P4)
Male
Male population (P12)
Female
Female population (P12)
Total_Units
Total housing units (H1)
Occ_Occupied
Occupied housing units (H3)
Occ_Vacant
Vacant housing units (H3)
Tenure_Owner
Owner-occupied units (H4)
Tenure_Renter
Renter-occupied units (H4)
Vacant_ForRent
Vacant units for rent (H5)
Vacant_ForSale
Vacant units for sale (H5)
Vacant_Other_All
All other vacant units (H5)
HH_Total
Total households (P16)
HH_Family
Total family households (P16)
HH_Married
Married couple family households (P16)
HH_OtherFamily
Other family households (P16)
HH_Male_NoSpouse
Male householder, no spouse present family household (P16)
HH_Female_NoSpouse
Female householder, no spouse present family household (P16)
HH_NonFamily
Total nonfamily households (P16)
HH_NonFamilyAlone
Householder living alone nonfamily households (P16)
HH_NonFamilyNotAlone
Householder not living alone nonfamily households (P16)
HH18_With18
Households with one or more people under 18 (P21)
HH18_FamilyWith18
Family households with one or more people under 18 (P21)
HH18_NonFamilyWith18
Nonfamily households with one or more people under 18 (P21)
HH18_No18
Households with no people under 18 (P21)
HH18_FamilyNo18
Family households with no people under 18 (P21)
HH18_NonFamilyNo18
Nonfamily households with no people under 18 (P21)
Age_U5
Population under 5 years (P12)
Age_5_9
Population age 5-9 (P12)
Age_10_14
Population age 10-14 (P12)
Age_15_17
Population age 15-17 (P12)
Age_18_21
Population age 18-21 (P12)
Age_22_24
Population age 22-24 (P12)
Age_25_29
Population age 25-29 (P12)
Age_30_34
Population age 30-34 (P12)
Age_35_39
Population age 35-39 (P12)
Age_40_44
Population age 40-44 (P12)
Age_45_49
Population age 45-49 (P12)
Age_50_54
Population age 50-54 (P12)
Age_55_59
Population age 55-59 (P12)
Age_60_64
Population age 60-64 (P12)
Age_65_69
Population age 65-69 (P12)
Age_70_74
Population age 70-74 (P12)
Age_75_79
Population age 75-79 (P12)
Age_80_84
Population age 80-84 (P12)
Age_85up
Population age 85 and up (P12)
Med_Age
Median age (P13)
Med_Age_Male
Median male age (P13)
Med_Age_Female
Median female age (P13)
To leave feedback or ask a question about this dataset, please fill out the following form: Neighborhood Statistical Area (NSA) Boundaries feedback form.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Cases and Deaths by Race/Ethnicity’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3fdc6593-c708-4a6a-8073-5ca862caa279 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More infor
--- Original source retains full ownership of the source dataset ---
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here