67 datasets found
  1. Share of employees working primarily remotely worldwide 2015-2023

    • statista.com
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of employees working primarily remotely worldwide 2015-2023 [Dataset]. https://www.statista.com/statistics/1450450/employees-remote-work-share/
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2023 - Aug 2023
    Area covered
    Worldwide
    Description

    The trend of working remotely has been slowly increasing globally since 2015, with a one to three percent annual increase rate. However, the COVID-19 pandemic in 2020 upended the world economy and global markets. Employment trends were no exception to this, with the share of employees working remotely increasing to some 27 percent in 2022 from just 13 percent two years prior. The industry with the highest share of remote workers globally in 2023 was by far the technology sector, with over 67 percent of tech employees worldwide working fully or mostly remotely. How are employers dealing with remote work? Many employers around the world have already adopted some remote work policies. According to IT industry leaders, reasons for remote work adoption ranged from a desire to broaden a company’s talent pool, increase productivity, and reduce costs from office equipment or real estate investments. Nonetheless, employers worldwide grappled with various concerns related to hybrid work. Among tech leaders, leading concerns included enabling effective collaboration and preserving organizational culture in hybrid work environments. Consequently, it’s unsurprising that maintaining organizational culture, fostering collaboration, and real estate investments emerged as key drivers for return-to-office mandates globally. However, these efforts were not without challenges. Notably, 21 percent of employers faced employee resistance to returning to the office, prompting a review of their remote work policies.

  2. Remote work frequency before and after COVID-19 in the United States 2020

    • statista.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Remote work frequency before and after COVID-19 in the United States 2020 [Dataset]. https://www.statista.com/statistics/1122987/change-in-remote-work-trends-after-covid-in-usa/
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2020
    Area covered
    United States
    Description

    Before the coronavirus (COVID-19) pandemic, 17 percent of U.S. employees worked from home 5 days or more per week, a share that increased to 44 percent during the pandemic. The outbreak of the COVID-19 pandemic accelerated the remote working trend, as quarantines and lockdowns made commuting and working in an office close to impossible for millions around the world. Remote work, also called telework or working from home (WFH), provided a solution, with employees performing their roles away from the office supported by specialized technology, eliminating the commute to an office to remain connected with colleagues and clients. What enables working from home?

    To enable remote work, employees rely on a remote work arrangements that enable hybrid work and make it safe during the COVID-19 pandemic. Technology supporting remote work including laptops saw a surge in demand, video conferencing companies such as Zoom jumped in value, and employers had to consider new communication techniques and resources. Is remote work the future of work?

    The response to COVID-19 has demonstrated that hybrid work models are not necessarily an impediment to productivity. For this reason, there is a general consensus that different remote work models will persist post-COVID-19. Many employers see benefits to flexible working arrangements, including positive results on employee wellness surveys, and potentially reducing office space. Many employees also plan on working from home more often, with 25 percent of respondents to a recent survey expecting remote work as a benefit of employment. As a result, it is of utmost importance to acknowledge any issues that may arise in this context to empower a hybrid workforce and ensure a smooth transition to more flexible work models.

  3. D

    NSW Remote Working Survey

    • data.nsw.gov.au
    csv
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Treasury (2023). NSW Remote Working Survey [Dataset]. https://data.nsw.gov.au/data/dataset/nsw-remote-working-survey
    Explore at:
    csv(2561959), csv(2482453)Available download formats
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    The Treasury
    Area covered
    New South Wales
    Description

    A survey of 1,500 NSW workers during August and September 2020 (2020 Remote Working Survey) and March and April 2021 (2021 Remote Working Survey), commissioned to understand workers' experiences of and attitudes to remote and hybrid working. To be eligible, respondents had to be employed NSW residents with experience of remote working in their current job. After accounting for unemployed people and those whose jobs cannot be done remotely—for example, dentists, cashiers and cleaners—the sample represents around 59 per cent of NSW workers. Workers answered questions on: • their attitudes to remote working • the amount of time they spent working remotely • their employers’ policies, practices, and attitudes • how they spent their time when working remotely • how barriers to remote working have changed • the barriers they faced to hybrid working • their expectations for future remote working

  4. G

    Percentage of workforce teleworking or working remotely, and percentage of...

    • open.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Mar 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Percentage of workforce teleworking or working remotely, and percentage of workforce able to carry out a majority of duties during the COVID-19 pandemic, by business characteristics [Dataset]. https://open.canada.ca/data/en/dataset/5814c88b-45ec-458e-84b5-7dd68f7593ae
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    Mar 6, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Percentage of workforce teleworking or working remotely prior to February 1, 2020, on March 31, 2020, and percentage of workforce able to carry out a majority of their duties during the COVID-19 pandemic, by North American Industry Classification System (NAICS) code, business employment size, type of business and majority ownership.

  5. U.S. workers working hybrid or remote vs on-site 2019-Q2 2024

    • statista.com
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. workers working hybrid or remote vs on-site 2019-Q2 2024 [Dataset]. https://www.statista.com/statistics/1356325/hybrid-vs-remote-work-us/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Hybrid models of working are on the rise in the United States according to survey data covering worker habits between 2019 and 2024. In the second quarter of 2024, 53 percent of U.S. workers reported working in a hybrid manner. The emergence of the COVID-19 pandemic saw a record number of people working remotely to help curb the spread of the virus. Since then, many workers have found a new shape to their home and working lives, finding that a hybrid model of working is more flexible than always being required to work on-site.

  6. R

    WageIndicator Survey of Living and Working in Coronavirus Times

    • dataverse.iza.org
    • datasets.iza.org
    zip
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Data Center of IZA (IDSC) (2024). WageIndicator Survey of Living and Working in Coronavirus Times [Dataset]. http://doi.org/10.15185/wif.corona.1
    Explore at:
    zip(1577392), zip(122268054)Available download formats
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Research Data Center of IZA (IDSC)
    License

    https://www.iza.org/wc/dataverse/IIL-1.0.pdfhttps://www.iza.org/wc/dataverse/IIL-1.0.pdf

    Area covered
    Brazil, Kenya, Puerto Rico, Burundi, Ukraine, Lebanon, Morocco, Panama, Lithuania, New Zealand
    Description

    WageIndicator is interviewing people around the world to discover what makes the Coronavirus lockdown easier (or tougher), and what is the COVID-19 effect on our jobs, lives and mood. WageIndicator shows coronavirus-induced changes in living and working conditions in over 110 countries on the basis of answers on the following questions among others in the Corona survey: Is your work affected by the corona crisis? Are precautionary measures taken at the workplace? Do you have to work from home? Has your workload increased/decreased? Have you lost your job/work/assignments? The survey contains questions about the home situation of respondents as well as about the possible manifestation of the corona disease in members of the household. Also the effect of having a pet in the house in corona-crisis times is included.

  7. d

    Zoomshock: The Geography and Local Labour Market Consequences of Working...

    • b2find.dkrz.de
    Updated May 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Zoomshock: The Geography and Local Labour Market Consequences of Working from Home, 2020-2021 - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/c90585da-3f54-5fe4-9200-4742054ed27a
    Explore at:
    Dataset updated
    May 4, 2023
    Description

    The increase in the extent of working-from-home determined by the COVID-19 health crisis has led to a substantial shift of economic activity across geographical areas; which we refer to as a Zoomshock. When a person works from home rather than at the office, their work-related consumption of goods and services provided by the locally consumed service industries will take place where they live, not where they work. Much of the clientèle of restaurants, coffee bars, pubs, hair stylists, health clubs, taxi providers and the like located near workplaces is transferred to establishment located near where people live. These data are our calculations of the Zoomshock at the MSOA level. They reflect estimats of the change in the number of people working in UK neighbourhoods due to home-working.The COVID-19 shutdown is not affecting all parts of the UK equally. Economic activity in local consumer service industries (LCSI), such as retail outlets, restaurants, hairdressers, or gardeners has all but stopped; other industries are less affected. These differences among industries and their varying importance across local economies means recovery will be sensitive to local economic conditions and will not be geographically uniform: some neighbourhoods face a higher recovery risk of not being able to return to pre-shutdown levels of economic activity. This recovery risk is the product of two variables. The first is the shock, the effect of the shutdown on local household incomes. The second is the multiplier, the effect on LCSI economic activity following a negative shock to household incomes. In neighbourhoods where many households rely on the LCSI sector as a primary source of income the multiplier may be particularly large, and these neighbourhoods are vulnerable to a vicious circle of reduced spending and reduced incomes. This project will produce data measuring the shock, the multiplier, and the COVID-19 shutdown recovery risk for UK neighbourhoods. These variables will be estimated using individual and firm level information from national surveys and administrative data. The dataset, and corresponding policy report, will be made public and proactively disseminated to guide local and national policy design. Recovery inequality is likely to be substantial: absent intervention, existing regional inequalities may be exacerbated. This research will provide a timely and necessary input into designing appropriate recovery policy. These data reflect derived variables based on the methodology described in De Fraja, Matheson and Rockey (2021) (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3752977). Variables are derived from 2011 Census data provided through the ONS Nomis website.

  8. a

    Number of workers working from home by block

    • gis-mdc.opendata.arcgis.com
    • hub.arcgis.com
    Updated Apr 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miami-Dade County, Florida (2021). Number of workers working from home by block [Dataset]. https://gis-mdc.opendata.arcgis.com/datasets/number-of-workers-working-from-home-by-block-1
    Explore at:
    Dataset updated
    Apr 2, 2021
    Dataset authored and provided by
    Miami-Dade County, Florida
    Area covered
    Description

    Source: Snapshot visualization of the estimated average number of individuals working from home by census block, disaggregated from ACS data.

    Purpose: Tile layer utilized for visualization.

    Contact Information: Charles Rudder (crudder@citiesthatwork.com)/ Alex Bell (abell@citiesthatwork.com)

  9. N

    Home Brook Township, Minnesota annual median income by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Home Brook Township, Minnesota annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/home-brook-township-mn-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Home Brook Township, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Home Brook township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Home Brook township, the median income for all workers aged 15 years and older, regardless of work hours, was $40,625 for males and $24,000 for females.

    These income figures highlight a substantial gender-based income gap in Home Brook township. Women, regardless of work hours, earn 59 cents for each dollar earned by men. This significant gender pay gap, approximately 41%, underscores concerning gender-based income inequality in the township of Home Brook township.

    - Full-time workers, aged 15 years and older: In Home Brook township, among full-time, year-round workers aged 15 years and older, males earned a median income of $85,000, while females earned $44,375, leading to a 48% gender pay gap among full-time workers. This illustrates that women earn 52 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Home Brook township, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home Brook township median household income by race. You can refer the same here

  10. England and Wales Census 2021 - RM078: Method used to travel to work by...

    • statistics.ukdataservice.ac.uk
    csv, json, xlsx
    Updated Jun 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2024). England and Wales Census 2021 - RM078: Method used to travel to work by industry [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/england-and-wales-census-2021-rm078-method-used-to-travel-to-work-by-industry
    Explore at:
    xlsx, csv, jsonAvailable download formats
    Dataset updated
    Jun 10, 2024
    Dataset provided by
    Northern Ireland Statistics and Research Agency
    UK Data Servicehttps://ukdataservice.ac.uk/
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Area covered
    England, Wales
    Description

    This dataset provides Census 2021 estimates that classify usual residents aged 16 years and over in England and Wales in employment the week before the census by method used to travel to work (2001 specification) and by industry. The estimates are as at Census Day, 21 March 2021.

    _As Census 2021 was during a unique period of rapid change, take care when using this data for planning purposes. Due to methodological changes the ‘mainly work at or from home: any workplace type’ category has a population of zero. Please use the transport_to_workplace_12a classification instead. Read more about this quality notice._

    Area type

    Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.

    For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.

    Lower tier local authorities

    Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.

    Coverage

    Census 2021 statistics are published for the whole of England and Wales. However, you can choose to filter areas by:

    • country - for example, Wales
    • region - for example, London
    • local authority - for example, Cornwall
    • health area – for example, Clinical Commissioning Group
    • statistical area - for example, MSOA or LSOA

    Method used to travel to workplace

    A person's place of work and their method of travel to work. This is the 2001 method of producing travel to work variables.

    "Work mainly from home" applies to someone who indicated their place of work as their home address and travelled to work by driving a car or van, for example visiting clients.

    Industry (current)

    Classifies people aged 16 years and over who were in employment between 15 March and 21 March 2021 by the Standard Industrial Classification (SIC) code that represents their current industry or business.

    The SIC code is assigned based on the information provided about a firm or organisation’s main activity.

  11. c

    Employment and Unemployment

    • data.ccrpc.org
    csv
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Unemployment [Dataset]. https://data.ccrpc.org/dataset/employment-and-unemployment
    Explore at:
    csv(2799)Available download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The employment and unemployment indicator shows several data points. The first figure is the number of people in the labor force, which includes the number of people who are either working or looking for work. The second two figures, the number of people who are employed and the number of people who are unemployed, are the two subcategories of the labor force. The unemployment rate is a calculation of the number of people who are in the labor force and unemployed as a percentage of the total number of people in the labor force.

    The unemployment rate does not include people who are not employed and not in the labor force. This includes adults who are neither working nor looking for work. For example, full-time students may choose not to seek any employment during their college career, and are thus not considered in the unemployment rate. Stay-at-home parents and other caregivers are also considered outside of the labor force, and therefore outside the scope of the unemployment rate.

    The unemployment rate is a key economic indicator, and is illustrative of economic conditions in the county at the individual scale.

    There are additional considerations to the unemployment rate. Because it does not count those who are outside the labor force, it can exclude individuals who were looking for a job previously, but have since given up. The impact of this on the overall unemployment rate is difficult to quantify, but it is important to note because it shows that no statistic is perfect.

    The unemployment rates for Champaign County, the City of Champaign, and the City of Urbana are extremely similar between 2000 and 2023.

    All three areas saw a dramatic increase in the unemployment rate between 2006 and 2009. The unemployment rates for all three areas decreased overall between 2010 and 2019. However, the unemployment rate in all three areas rose sharply in 2020 due to the effects of the COVID-19 pandemic. The unemployment rate in all three areas dropped again in 2021 as pandemic restrictions were removed, and were almost back to 2019 rates in 2022. However, the unemployment rate in all three areas rose slightly from 2022 to 2023.

    This data is sourced from the Illinois Department of Employment Security’s Local Area Unemployment Statistics (LAUS), and from the U.S. Bureau of Labor Statistics.

    Sources: Illinois Department of Employment Security, Local Area Unemployment Statistics (LAUS); U.S. Bureau of Labor Statistics.

  12. Effects of working from home on finances

    • cy.ons.gov.uk
    • ons.gov.uk
    xlsx
    Updated Feb 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Effects of working from home on finances [Dataset]. https://cy.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/datasets/effectsofworkingfromhomeonfinances
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 14, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Analysis of how working from home has affected individuals’ spending and how this differs by characteristics, Great Britain.

  13. Transportation to Work

    • data.ca.gov
    pdf, xlsx, zip
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transportation to Work [Dataset]. https://data.ca.gov/dataset/transportation-to-work
    Explore at:
    xlsx, pdf, zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  14. c

    Commuter Mode Share

    • data.ccrpc.org
    csv
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Commuter Mode Share [Dataset]. https://data.ccrpc.org/dataset/commuter-mode-share
    Explore at:
    csv(1639)Available download formats
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    This commuter mode share data shows the estimated percentages of commuters in Champaign County who traveled to work using each of the following modes: drove alone in an automobile; carpooled; took public transportation; walked; biked; went by motorcycle, taxi, or other means; and worked at home. Commuter mode share data can illustrate the use of and demand for transit services and active transportation facilities, as well as for automobile-focused transportation projects.

    Driving alone in an automobile is by far the most prevalent means of getting to work in Champaign County, accounting for over 69 percent of all work trips in 2023. This is the same rate as 2019, and the first increase since 2017, both years being before the COVID-19 pandemic began.

    The percentage of workers who commuted by all other means to a workplace outside the home also decreased from 2019 to 2021, most of these modes reaching a record low since this data first started being tracked in 2005. The percentage of people carpooling to work in 2023 was lower than every year except 2016 since this data first started being tracked in 2005. The percentage of people walking to work increased from 2022 to 2023, but this increase is not statistically significant.

    Meanwhile, the percentage of people in Champaign County who worked at home more than quadrupled from 2019 to 2021, reaching a record high over 18 percent. It is a safe assumption that this can be attributed to the increase of employers allowing employees to work at home when the COVID-19 pandemic began in 2020.

    The work from home figure decreased to 11.2 percent in 2023, but which is the first statistically significant decrease since the pandemic began. However, this figure is still about 2.5 times higher than 2019, even with the COVID-19 emergency ending in 2023.

    Commuter mode share data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Means of Transportation to Work.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 September 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (14 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  15. d

    Employed in Times of Corona (May 2020) - Dataset - B2FIND

    • b2find.dkrz.de
    Updated May 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Employed in Times of Corona (May 2020) - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/f658c540-a045-58df-8754-e3736e744d58
    Explore at:
    Dataset updated
    May 15, 2020
    Description

    The Corona crisis (COVID-19) affects a large proportion of companies and freelancers in Germany. Against this background, the study examines the personal situation and working conditions of employees in Germany in times of corona. The analysis mainly refers to the situation in May 2020 and can only make limited statements about the further situation of the employed persons in the course of the corona pandemic. Personal situation: change in working times during the corona crisis; current work situation (local focus of one´s own work); preference for home office; preference for future home office; financial losses due to the corona crisis; concerns about the financial and economic consequences of the corona crisis in Germany; concerns about the corona crisis in personal areas (job security, current working conditions, financial situation, career opportunities, family situation, health, psychological well-being, housing situation); support from the employer in the corona crisis. 2. Economy and welfare state: political interest; assessment of the economic situation in Germany; preferred form of government (strong vs. liberal state); agreement on various statements on the weighing of values in the Corona crisis (the restrictions on public life to protect the population from Corona are not in proportion to the economic crisis caused by it, the money now being made available for economic aid will later be lacking in other important areas such as education, infrastructure or climate protection, for politicians, the health of the population is the top priority, the interests of the economy influence them less strongly with regard to the corona crisis, the worst part of the crisis is now behind us, as a result of the economic effects of the corona crisis the contrast between rich and poor in Germany will become even more pronounced, the corona crisis affects the low earners more than the middle class, the corona crisis significantly advances the digitalisation of the world of work); perception of state action in the corona crisis on the basis of pairs of opposites (e.g. bureaucratic - unbureaucratic, passive - active, etc.); responsibility of the state to provide financial support to companies in the corona crisis; responsibility of the state to provide financial support to private individuals in the corona crisis over and above basic provision; recipients of state financial aid in the corona crisis (companies, directly to needy private individuals, companies and private individuals alike); assessment of the bureaucracy involved in state financial aid (speed vs. exact examination). 3. Measures: awareness of current measures to support business and individuals in the corona crisis; assessment of current measures to support business and individuals in the corona crisis; reliance on assistance in the corona crisis; nature of assistance used in the corona crisis; barriers to use of assistance in the corona crisis; assessment of the effectiveness of the state measures to cope with the corona crisis; appropriate additional measures to mitigate the economic consequences; concerns about the consequences of the planned state measures (increasing tax burden, rising social contributions, rising inflation, stagnating pension levels, rising retirement age, reduction of other state transfers, safeguarding savings). 4. Information: active search for information on financial assistance offers by the Federal Government in the corona crisis; self-assessment of the level of information on measures to support business and private individuals in the corona crisis; request for detailed information on state assistance measures in the corona crisis (e.g. application process, sources of funding, conditions for receiving assistance, etc.) sources of information used about state aid measures in the Corona crisis; contact with institutions offering economic and financial aid during the Corona crisis (development bank/ municipal development agency, employment agency, tax office, none of them); experience with institutions offering economic and financial aid during the Corona crisis (appropriate treatment). 5. Outlook: assessment of the future economic situation in Germany; assessment of Germany´s future as a strong business location; assessment of its own future economic situation; assessment of the duration of the economic impairment caused by the Corona crisis. Demography: age; sex; education; employment; self-localization social class; net household income; current household income; household income before the crisis; occupational activity; belonging to systemically important occupations; number of persons in the household; number of children under 18 in the household; size of town; party sympathy; migration background. Additionally coded: current number; federal state; education (low, medium, high); weighting factor.

  16. N

    Home township, Newaygo County, Michigan annual income distribution by work...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Home township, Newaygo County, Michigan annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/home-township-newaygo-county-mi-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Home Township, Newaygo County, Michigan
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Home township. The dataset can be utilized to gain insights into gender-based income distribution within the Home township population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Home township, among individuals aged 15 years and older with income, there were 96 men and 123 women in the workforce. Among them, 33 men were engaged in full-time, year-round employment, while 30 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 6.06% fell within the income range of under $24,999, while none of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 33.33% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home township median household income by race. You can refer the same here

  17. c

    Understanding Society: COVID-19 Study Teaching Dataset, 2020-2021

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Essex; University of Manchester (2024). Understanding Society: COVID-19 Study Teaching Dataset, 2020-2021 [Dataset]. http://doi.org/10.5255/UKDA-SN-9019-1
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    Cathie Marsh Institute for Social Research
    Institute for Social and Economic Research
    Authors
    University of Essex; University of Manchester
    Time period covered
    Apr 22, 2020 - Sep 30, 2021
    Area covered
    United Kingdom
    Variables measured
    Families/households, Individuals, National
    Measurement technique
    Self-administered questionnaire: Paper, Telephone interview: Computer-assisted (CATI), Web-based interview
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    As the UK went into the first lockdown of the COVID-19 pandemic, the team behind the biggest social survey in the UK, Understanding Society (UKHLS), developed a way to capture these experiences. From April 2020, participants from this Study were asked to take part in the Understanding Society COVID-19 survey, henceforth referred to as the COVID-19 survey or the COVID-19 study.

    The COVID-19 survey regularly asked people about their situation and experiences. The resulting data gives a unique insight into the impact of the pandemic on individuals, families, and communities. The COVID-19 Teaching Dataset contains data from the main COVID-19 survey in a simplified form. It covers topics such as

    • Socio-demographics
    • Whether working at home and home-schooling
    • COVID symptoms
    • Health and well-being
    • Social contact and neighbourhood cohesion
    • Volunteering

    The resource contains two data files:

    • Cross-sectional: contains data collected in Wave 4 in July 2020 (with some additional variables from other waves);
    • Longitudinal: Contains mainly data from Waves 1, 4 and 9 with key variables measured at three time points.

    Key features of the dataset

    • Missing values: in the web survey, participants clicking "Next" but not answering a question were given further options such as "Don't know" and "Prefer not to say". Missing observations like these are recorded using negative values such as -1 for "Don't know". In many instances, users of the data will need to set these values as missing. The User Guide includes Stata and SPSS code for setting negative missing values to system missing.
    • The Longitudinal file is a balanced panel and is in wide format. A balanced panel means it only includes participants that took part in every wave. In wide format, each participant has one row of information, and each measurement of the same variable is a different variable.
    • Weights: both the cross-sectional and longitudinal files include survey weights that adjust the sample to represent the UK adult population. The cross-sectional weight (betaindin_xw) adjusts for unequal selection probabilities in the sample design and for non-response. The longitudinal weight (ci_betaindin_lw) adjusts for the sample design and also for the fact that not all those invited to participate in the survey, do participate in all waves.
    • Both the cross-sectional and longitudinal datasets include the survey design variables (psu and strata).

    A full list of variables in both files can be found in the User Guide appendix.

    Who is in the sample?

    All adults (16 years old and over as of April 2020), in households who had participated in at least one of the last two waves of the main study Understanding Society, were invited to participate in this survey. From the September 2020 (Wave 5) survey onwards, only sample members who had completed at least one partial interview in any of the first four web surveys were invited to participate. From the November 2020 (Wave 6) survey onwards, those who had only completed the initial survey in April 2020 and none since, were no longer invited to participate

    The User guide accompanying the data adds to the information here and includes a full variable list with details of measurement levels and links to the relevant questionnaire.


    Main Topics:

    • Socio-demographics;
    • Whether working at home and home-schooling;
    • COVID symptoms;
    • Health and well-being;
    • Social contact and neighbourhood cohesion;
    • Volunteering.

  18. N

    Home Brook Township, Minnesota annual income distribution by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Home Brook Township, Minnesota annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/home-brook-township-mn-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Home Brook Township, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Home Brook township. The dataset can be utilized to gain insights into gender-based income distribution within the Home Brook township population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Home Brook township, among individuals aged 15 years and older with income, there were 113 men and 104 women in the workforce. Among them, 44 men were engaged in full-time, year-round employment, while 27 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 4.55% fell within the income range of under $24,999, while 7.41% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 38.64% of men in full-time roles earned incomes exceeding $100,000, while 7.41% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home Brook township median household income by race. You can refer the same here

  19. N

    Home Lake Township, Minnesota annual income distribution by work experience...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Home Lake Township, Minnesota annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021) [Dataset]. https://www.neilsberg.com/research/datasets/23c5e551-981b-11ee-99cf-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Home Lake Township, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Home Lake township. The dataset can be utilized to gain insights into gender-based income distribution within the Home Lake township population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Home Lake township, among individuals aged 15 years and older with income, there were 37 men and 43 women in the workforce. Among them, 22 men were engaged in full-time, year-round employment, while 23 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 4.55% fell within the income range of under $24,999, while 56.52% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 27.27% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)

    https://i.neilsberg.com/ch/home-lake-township-mn-income-distribution-by-gender-and-employment-type.jpeg" alt="Home Lake Township, Minnesota gender and employment-based income distribution analysis (Ages 15+)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Home Lake township median household income by gender. You can refer the same here

  20. U

    RF04AEW - 2011 SRS Merged LA/LA [Location of where people live when working...

    • statistics.ukdataservice.ac.uk
    csv, docx, php, xls +1
    Updated Sep 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Flow (2022). RF04AEW - 2011 SRS Merged LA/LA [Location of where people live when working and Place of work (with 'second address outside UK' collapsed)] [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/rf04aew-2011-srs-merged-lala-location-where-people-live-when-working-and-place-work-second
    Explore at:
    xls(52736), php, xls(53248), docx(78859), csv(2361939), zip(354207), docx(15995)Available download formats
    Dataset updated
    Sep 22, 2022
    Dataset provided by
    Flow
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Area covered
    United Kingdom
    Description

    Dataset population: All usual residents aged 16 and over in employment the week before the census

    Location of where people live when working

    The location in which an individual lives when they are working.

    Place of work

    The location in which an individual works.

    Geographies of origin areas:

    Geographies of destination areas:

    For the area in which people live while they are working, if that address is a work-related second address that is outside of the UK then this is signified by code OD0000005.

    *The following codes are used for area of workplace that is not an LAD geographic code:

    OD0000001 = Mainly work at or from home

    OD0000002 = Offshore installation

    OD0000003 = No fixed place

    OD0000004 = Outside UK*

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Share of employees working primarily remotely worldwide 2015-2023 [Dataset]. https://www.statista.com/statistics/1450450/employees-remote-work-share/
Organization logo

Share of employees working primarily remotely worldwide 2015-2023

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 12, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 2023 - Aug 2023
Area covered
Worldwide
Description

The trend of working remotely has been slowly increasing globally since 2015, with a one to three percent annual increase rate. However, the COVID-19 pandemic in 2020 upended the world economy and global markets. Employment trends were no exception to this, with the share of employees working remotely increasing to some 27 percent in 2022 from just 13 percent two years prior. The industry with the highest share of remote workers globally in 2023 was by far the technology sector, with over 67 percent of tech employees worldwide working fully or mostly remotely. How are employers dealing with remote work? Many employers around the world have already adopted some remote work policies. According to IT industry leaders, reasons for remote work adoption ranged from a desire to broaden a company’s talent pool, increase productivity, and reduce costs from office equipment or real estate investments. Nonetheless, employers worldwide grappled with various concerns related to hybrid work. Among tech leaders, leading concerns included enabling effective collaboration and preserving organizational culture in hybrid work environments. Consequently, it’s unsurprising that maintaining organizational culture, fostering collaboration, and real estate investments emerged as key drivers for return-to-office mandates globally. However, these efforts were not without challenges. Notably, 21 percent of employers faced employee resistance to returning to the office, prompting a review of their remote work policies.

Search
Clear search
Close search
Google apps
Main menu