Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy. The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON AUG. 11
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: Due to the RMS change for CPS, this data set stops on 6/2/2024. For records beginning on 6/3/2024, please see the dataset at this link: https://data.cincinnati-oh.gov/safety/Reported-Crime-STARS-Category-Offenses-/7aqy-xrv9/about_data
Data Description: This data represents reported Crime Incidents in the City of Cincinnati. Incidents are the records, of reported crimes, collated by an agency for management. Incidents are typically housed in a Records Management System (RMS) that stores agency-wide data about law enforcement operations. This does not include police calls for service, arrest information, final case determination, or any other incident outcome data.
Data Creation: The Cincinnati Police Department's (CPD) records crime incidents in the City through Records Management System (RMS) that stores agency-wide data about law enforcement operations.
Data Created By: The source of this data is the Cincinnati Police Department.
Refresh Frequency: This data is updated daily.
CincyInsights: The City of Cincinnati maintains an interactive dashboard portal, CincyInsights in addition to our Open Data in an effort to increase access and usage of city data. This data set has an associated dashboard available here: https://insights.cincinnati-oh.gov/stories/s/8eaa-xrvz
Data Dictionary: A data dictionary providing definitions of columns and attributes is available as an attachment to this dataset.
Processing: The City of Cincinnati is committed to providing the most granular and accurate data possible. In that pursuit the Office of Performance and Data Analytics facilitates standard processing to most raw data prior to publication. Processing includes but is not limited: address verification, geocoding, decoding attributes, and addition of administrative areas (i.e. Census, neighborhoods, police districts, etc.).
Data Usage: For directions on downloading and using open data please visit our How-to Guide: https://data.cincinnati-oh.gov/dataset/Open-Data-How-To-Guide/gdr9-g3ad
Disclaimer: In compliance with privacy laws, all Public Safety datasets are anonymized and appropriately redacted prior to publication on the City of Cincinnati’s Open Data Portal. This means that for all public safety datasets: (1) the last two digits of all addresses have been replaced with “XX,” and in cases where there is a single digit street address, the entire address number is replaced with "X"; and (2) Latitude and Longitude have been randomly skewed to represent values within the same block area (but not the exact location) of the incident.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains the number of victims of suicide arranged by marital status, method, motives, age and sex. They represent the number deaths by suicide in the resident population of the Netherlands.
The figures in this table are equal to the suicide figures in the causes of death statistics, because they are based on the same files. The causes of death statistics do not contain information on the motive of suicide. For the years 1950-1995, this information is obtained from a historical data file on suicides. For the years 1996-now the motive is taken from the external causes of death (Niet-Natuurlijke dood) file. Before the 9th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD), i.e. for the years 1950-1978, it was not possible to code "jumping in front of train/metro". For these years 1950-1978 "jumping in front of train/metro" has been left empty, and it has been counted in the group "other method".
Relative figures have been calculated per 100 000 of the corresponding population group. The figures are calculated based on the average population of the corresponding year.
Data available from: 1950
Status of the figures: The figures up to and including 2023 are final.
Changes as of January 23rd 2025: The figures for 2023 are made final.
When will new figures be published: In the third quarter of 2025 the provisional figures for 2024 will be published.
BackgroundAbout 1 million people worldwide commit suicide each year, and college students with suicidal ideation are at high risk of suicide. The prevalence of suicidal ideation in college students has been estimated extensively, but quantitative syntheses of overall prevalence are scarce, especially in China. Accurate estimates of prevalence are important for making public policy. In this paper, we aimed to determine the prevalence of suicidal ideation in Chinese college students.Objective and MethodsDatabases including PubMed, Web of Knowledge, Chinese Web of Knowledge, Wangfang (Chinese database) and Weipu (Chinese database) were systematically reviewed to identify articles published between 2004 to July 2013, in either English or Chinese, reporting prevalence estimates of suicidal ideation among Chinese college students. The strategy also included a secondary search of reference lists of records retrieved from databases. Then the prevalence estimates were summarized using a random effects model. The effects of moderator variables on the prevalence estimates were assessed using a meta-regression model.ResultsA total of 41 studies involving 160339 college students were identified, and the prevalence ranged from 1.24% to 26.00%. The overall pooled prevalence of suicidal ideation among Chinese college students was 10.72% (95%CI: 8.41% to 13.28%). We noted substantial heterogeneity in prevalence estimates. Subgroup analyses showed that prevalence of suicidal ideation in females is higher than in males.ConclusionsThe prevalence of suicidal ideation in Chinese college students is relatively high, although the suicide rate is lower compared with the entire society, suggesting the need for local surveys to inform the development of health services for college students.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of suicides and suicide rates, by sex and age, in England and Wales. Information on conclusion type is provided, along with the proportion of suicides by method and the median registration delay.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains individual details who committed suicide in Bangladesh during the Pandemic between February, 2020 to November, 2020. This dataset includes details of every individuals who committed suicide like personal details, family & social life, profession, financial condition, methods of committing suicide, location and weather info. The dataset is freely available. The major fields included in this dataset are: age group, age, gender, profession group, reason, method, suicide date & time, addiction status, mental status, economic condition, marital status, family details, academic qualification, weather. Apart from the above data this dataset also contains a CSV file of a Bengali wordcloud built on social media posts of the suicide victims.
The access to the dataset files is kept restricted. Fill the form (link in the References section) to request the data.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains all the different kinds of weapons and how many times they were used to commit crimes in Los Angeles between the years 2020 to early 2024. This dataset was created from the data published by the LAPD and you can find the original dataset here.
Number and percentage of homicide victims, by type of firearm used to commit the homicide (total firearms; handgun; rifle or shotgun; other firearm-like weapons; firearm, type of firearm is unknown), Canada, 1974 to 2024.
There has been a surge in crimes committed in recent years, making crime a top cause of concern for law enforcement. If we are able to estimate whether someone is going to commit a crime in the future, we can take precautions and be prepared. You are given a dataset containing answers to various questions concerning the professional and private lives of several people. A few of them have been arrested for various small and large crimes in the past.The train data consists of 39999 rows, while the test data consists of 5710 rows.
The train data consists of 39999 rows, while the test data consists of 5710 rows.
Use the given data to predict if the people in the test data will commit a crime. You are given three files to download: train, test and sample submission. The evaluation metric is precision score.
This dataset contains information on suicides which happened in India during 2015.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4208638%2Ffab2e99b439f9780daf358511060f514%2FWorld-Suicide-Prevention-Day.jpg?generation=1598114750200382&alt=media" alt="">
The singular age-old social precept of 'Lok Kya Kahenge?' (loosely translated: "What will people say?") suppresses the much-needed psychological care in India. It's high time that we understand why suicides happen and what are the reasons behind it. This dataset aims to spread awareness about suicides in India.
I acquired this dataset from here. Have a look at the website.
This dataset contains 9 files in .csv format. You can find a description for each column. Let me summarize it here as well.
We now have plenty of data to explore to draw some conclusions about suicides which happened in India during 2015. Let's start by answering these questions: - What are the top 5 states where Farmers' suicides occurred the most? - What's the top reason that agricultural labourers committed suicide? - Which Profession has the most suicides? What could be the reason? - How many Transgender suicides have occurred in different categories?
I hope these questions interest you in starting to explore this dataset.
I thank the Indian Government for making it public under their Open Government Data (OGD) Platform India. Please use this dataset strictly for educational purposes. Thank you.
This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.
This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.
The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.
How does this dataset classify victims?
The methodology by which this dataset classifies victims of violent crime differs by victimization type:
Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.
To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.
For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:
Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:
Note: All businesses identified as victims in CPD data have been removed from this dataset.
Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”
Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).
Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.
Over *** thousand deaths due to suicides were recorded in India in 2022. Furthermore, majority of suicides were reported in the state of Tamil Nadu, followed by Rajasthan. The number of suicides that year had increased from the previous year. Some of the causes for suicides in the country were due to professional problems, abuse, violence, family problems, financial loss, sense of isolation and mental disorders. Depressive disorders and suicide As of 2015, over ****** million people worldwide suffered from some kind of depressive disorder. Furthermore, over ** percent of the total population in India suffer from different forms of mental disorders as of 2017. There exists a positive correlation between the number of suicide mortality rates and people with select mental disorders as opposed to those without. Risk factors for mental disorders Every ******* person in India suffers from some form of mental disorder. Today, depressive disorders are regarded as the leading contributor not only to disease burden and morbidity worldwide, but even suicide if not addressed. In 2022, the leading cause for suicide deaths in India was due to family problems. The second leading cause was due to illness. Some of the risk factors, relative to developing mental disorders including depressive and anxiety disorders, include bullying victimization, poverty, unemployment, childhood sexual abuse and intimate partner violence.
Number of homicide victims, by method used to commit the homicide (total methods used; shooting; stabbing; beating; strangulation; fire (burns or suffocation); other methods used; methods used unknown), Canada, 1974 to 2024.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Language | Number of Samples |
Java | 153,119 |
Ruby | 233,710 |
Go | 137,998 |
JavaScript | 373,598 |
Python | 472,469 |
PHP | 294,394 |
Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2024.
List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending March 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)
https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional d
Number, rate and percentage changes in rates of homicide victims, Canada, provinces and territories, 1961 to 2024.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This folder contains data behind the story Higher Rates Of Hate Crimes Are Tied To Income Inequality.
Header | Definition |
---|---|
state | State name |
median_household_income | Median household income, 2016 |
share_unemployed_seasonal | Share of the population that is unemployed (seasonally adjusted), Sept. 2016 |
share_population_in_metro_areas | Share of the population that lives in metropolitan areas, 2015 |
share_population_with_high_school_degree | Share of adults 25 and older with a high-school degree, 2009 |
share_non_citizen | Share of the population that are not U.S. citizens, 2015 |
share_white_poverty | Share of white residents who are living in poverty, 2015 |
gini_index | Gini Index, 2015 |
share_non_white | Share of the population that is not white, 2015 |
share_voters_voted_trump | Share of 2016 U.S. presidential voters who voted for Donald Trump |
hate_crimes_per_100k_splc | Hate crimes per 100,000 population, Southern Poverty Law Center, Nov. 9-18, 2016 |
avg_hatecrimes_per_100k_fbi | Average annual hate crimes per 100,000 population, FBI, 2010-2015 |
Sources: Kaiser Family Foundation Kaiser Family Foundation Kaiser Family Foundation Census Bureau Kaiser Family Foundation Kaiser Family Foundation Census Bureau Kaiser Family Foundation United States Elections Project Southern Poverty Law Center FBI
Please see the following commit: https://github.com/fivethirtyeight/data/commit/fbc884a5c8d45a0636e1d6b000021632a0861986
This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!
This dataset is maintained using GitHub's API and Kaggle's API.
This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy. The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).