5 datasets found
  1. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  2. Number of suicides India 1971-2022

    • statista.com
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of suicides India 1971-2022 [Dataset]. https://www.statista.com/statistics/665354/number-of-suicides-india/
    Explore at:
    Dataset updated
    Jan 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Over 170 thousand deaths due to suicides were recorded in India in 2022. Furthermore, majority of suicides were reported in the state of Tamil Nadu, followed by Rajasthan. The number of suicides that year had increased from the previous year. Some of the causes for suicides in the country were due to professional problems, abuse, violence, family problems, financial loss, sense of isolation and mental disorders.

    Depressive disorders and suicide

    As of 2015, over 322.48 million people worldwide suffered from some kind of depressive disorder. Furthermore, over 14 percent of the total population in India suffer from different forms of mental disorders as of 2017. There exists a positive correlation between the number of suicide mortality rates and people with select mental disorders as opposed to those without.

    Risk factors for mental disorders

    Every seventh person in India suffers from some form of mental disorder. Today, depressive disorders are regarded as the leading contributor not only to disease burden and morbidity worldwide, but even suicide if not addressed. In 2022, the leading cause for suicide deaths in India was due to family problems. The second leading cause was due to illness. Some of the risk factors, relative to developing mental disorders including depressive and anxiety disorders, include bullying victimization, poverty, unemployment, childhood sexual abuse and intimate partner violence.

  3. T

    Suicides And Attempts

    • data.cincinnati-oh.gov
    application/rdfxml +5
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cincinnati (2025). Suicides And Attempts [Dataset]. https://data.cincinnati-oh.gov/Safety/Suicides-And-Attempts/w92t-np3h
    Explore at:
    xml, json, application/rssxml, application/rdfxml, tsv, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    City of Cincinnati
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Fire Incident data includes all fire incident responses. This includes emergency medical services (EMS) calls, fires, rescue incidents, and all other services handled by the Fire Department.

    The source of this data is the City of Cincinnati's computer aided dispatch (CAD) database.

    This data is updated daily.

    DISCLAIMER: In compliance with privacy laws, all Public Safety datasets are anonymized and appropriately redacted prior to publication on the City of Cincinnati’s Open Data Portal. This means that for all public safety datasets: (1) the last two digits of all addresses have been replaced with “XX,” and in cases where there is a single digit street address, the entire address number is replaced with "X"; and (2) Latitude and Longitude have been randomly skewed to represent values within the same block area (but not the exact location) of the incident.

  4. What Are Reasons for the Large Gender Differences in the Lethality of...

    • plos.figshare.com
    doc
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roland Mergl; Nicole Koburger; Katherina Heinrichs; András Székely; Mónika Ditta Tóth; James Coyne; Sónia Quintão; Ella Arensman; Claire Coffey; Margaret Maxwell; Airi Värnik; Chantal van Audenhove; David McDaid; Marco Sarchiapone; Armin Schmidtke; Axel Genz; Ricardo Gusmão; Ulrich Hegerl (2023). What Are Reasons for the Large Gender Differences in the Lethality of Suicidal Acts? An Epidemiological Analysis in Four European Countries [Dataset]. http://doi.org/10.1371/journal.pone.0129062
    Explore at:
    docAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Roland Mergl; Nicole Koburger; Katherina Heinrichs; András Székely; Mónika Ditta Tóth; James Coyne; Sónia Quintão; Ella Arensman; Claire Coffey; Margaret Maxwell; Airi Värnik; Chantal van Audenhove; David McDaid; Marco Sarchiapone; Armin Schmidtke; Axel Genz; Ricardo Gusmão; Ulrich Hegerl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    BackgroundIn Europe, men have lower rates of attempted suicide compared to women and at the same time a higher rate of completed suicides, indicating major gender differences in lethality of suicidal behaviour. The aim of this study was to analyse the extent to which these gender differences in lethality can be explained by factors such as choice of more lethal methods or lethality differences within the same suicide method or age. In addition, we explored gender differences in the intentionality of suicide attempts.Methods and FindingsMethods. Design: Epidemiological study using a combination of self-report and official data. Setting: Mental health care services in four European countries: Germany, Hungary, Ireland, and Portugal. Data basis: Completed suicides derived from official statistics for each country (767 acts, 74.4% male) and assessed suicide attempts excluding habitual intentional self-harm (8,175 acts, 43.2% male).Main Outcome Measures and Data Analysis. We collected data on suicidal acts in eight regions of four European countries participating in the EU-funded “OSPI-Europe”-project (www.ospi-europe.com). We calculated method-specific lethality using the number of completed suicides per method * 100 / (number of completed suicides per method + number of attempted suicides per method). We tested gender differences in the distribution of suicidal acts for significance by using the χ2-test for two-by-two tables. We assessed the effect sizes with phi coefficients (φ). We identified predictors of lethality with a binary logistic regression analysis. Poisson regression analysis examined the contribution of choice of methods and method-specific lethality to gender differences in the lethality of suicidal acts.Findings Main ResultsSuicidal acts (fatal and non-fatal) were 3.4 times more lethal in men than in women (lethality 13.91% (regarding 4106 suicidal acts) versus 4.05% (regarding 4836 suicidal acts)), the difference being significant for the methods hanging, jumping, moving objects, sharp objects and poisoning by substances other than drugs. Median age at time of suicidal behaviour (35–44 years) did not differ between males and females. The overall gender difference in lethality of suicidal behaviour was explained by males choosing more lethal suicide methods (odds ratio (OR) = 2.03; 95% CI = 1.65 to 2.50; p < 0.000001) and additionally, but to a lesser degree, by a higher lethality of suicidal acts for males even within the same method (OR = 1.64; 95% CI = 1.32 to 2.02; p = 0.000005). Results of a regression analysis revealed neither age nor country differences were significant predictors for gender differences in the lethality of suicidal acts. The proportion of serious suicide attempts among all non-fatal suicidal acts with known intentionality (NFSAi) was significantly higher in men (57.1%; 1,207 of 2,115 NFSAi) than in women (48.6%; 1,508 of 3,100 NFSAi) (χ2 = 35.74; p < 0.000001).Main limitations of the studyDue to restrictive data security regulations to ensure anonymity in Ireland, specific ages could not be provided because of the relatively low absolute numbers of suicide in the Irish intervention and control region. Therefore, analyses of the interaction between gender and age could only be conducted for three of the four countries. Attempted suicides were assessed for patients presenting to emergency departments or treated in hospitals. An unknown rate of attempted suicides remained undetected. This may have caused an overestimation of the lethality of certain methods. Moreover, the detection of attempted suicides and the registration of completed suicides might have differed across the four countries. Some suicides might be hidden and misclassified as undetermined deaths.ConclusionsMen more often used highly lethal methods in suicidal behaviour, but there was also a higher method-specific lethality which together explained the large gender differences in the lethality of suicidal acts. Gender differences in the lethality of suicidal acts were fairly consistent across all four European countries examined. Males and females did not differ in age at time of suicidal behaviour. Suicide attempts by males were rated as being more serious independent of the method used, with the exceptions of attempted hanging, suggesting gender differences in intentionality associated with suicidal behaviour. These findings contribute to understanding of the spectrum of reasons for gender differences in the lethality of suicidal behaviour and should inform the development of gender specific strategies for suicide prevention.

  5. d

    Data from: Chicago Women's Health Risk Study, 1995-1998

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Chicago Women's Health Risk Study, 1995-1998 [Dataset]. https://catalog.data.gov/dataset/chicago-womens-health-risk-study-1995-1998-84646
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    Chicago
    Description

    The goal of the Chicago Women's Health Risk Study (CWHRS) was to develop a reliable and validated profile of risk factors directly related to lethal or life-threatening outcomes in intimate partner violence, for use in agencies and organizations working to help women in abusive relationships. Data were collected to draw comparisons between abused women in situations resulting in fatal outcomes and those without fatal outcomes, as well as a baseline comparison of abused women and non-abused women, taking into account the interaction of events, circumstances, and interventions occurring over the course of a year or two. The CWHRS used a quasi-experimental design to gather survey data on 705 women at the point of service for any kind of treatment (related to abuse or not) sought at one of four medical sites serving populations in areas with high rates of intimate partner homicide (Chicago Women's Health Center, Cook County Hospital, Erie Family Health Center, and Roseland Public Health Center). Over 2,600 women were randomly screened in these settings, following strict protocols for safety and privacy. One goal of the design was that the sample would not systematically exclude high-risk but understudied populations, such as expectant mothers, women without regular sources of health care, and abused women in situations where the abuse is unknown to helping agencies. To accomplish this, the study used sensitive contact and interview procedures, developed sensitive instruments, and worked closely with each sample site. The CWHRS attempted to interview all women who answered "yes -- within the past year" to any of the three screening questions, and about 30 percent of women who did not answer yes, provided that the women were over age 17 and had been in an intimate relationship in the past year. In total, 705 women were interviewed, 497 of whom reported that they had experienced physical violence or a violent threat at the hands of an intimate partner in the past year (the abused, or AW, group). The remaining 208 women formed the comparison group (the non-abused, or NAW, group). Data from the initial interview sections comprise Parts 1-8. For some women, the AW versus NAW interview status was not the same as their screening status. When a woman told the interviewer that she had experienced violence or a violent threat in the past year, she and the interviewer completed a daily calendar history, including details of important events and each violent incident that had occurred the previous year. The study attempted to conduct one or two follow-up interviews over the following year with the 497 women categorized as AW. The follow-up rate was 66 percent. Data from this part of the clinic/hospital sample are found in Parts 9-12. In addition to the clinic/hospital sample, the CWHRS collected data on each of the 87 intimate partner homicides occurring in Chicago over a two-year period that involved at least one woman age 18 or older. Using the same interview schedule as for the clinic/hospital sample, CWHRS interviewers conducted personal interviews with one to three "proxy respondents" per case, people who were knowledgeable and credible sources of information about the couple and their relationship, and information was compiled from official or public records, such as court records, witness statements, and newspaper accounts (Parts 13-15). In homicides in which a woman was the homicide offender, attempts were made to contact and interview her. This "lethal" sample, all such homicides that took place in 1995 or 1996, was developed from two sources, HOMICIDES IN CHICAGO, 1965-1995 (ICPSR 6399) and the Cook County Medical Examiner's Office. Part 1 includes demographic variables describing each respondent, such as age, race and ethnicity, level of education, employment status, screening status (AW or NAW), birthplace, and marital status. Variables in Part 2 include details about the woman's household, such as whether she was homeless, the number of people living in the household and details about each person, the number of her children or other children in the household, details of any of her children not living in her household, and any changes in the household structure over the past year. Variables in Part 3 deal with the woman's physical and mental health, including pregnancy, and with her social support network and material resources. Variables in Part 4 provide information on the number and type of firearms in the household, whether the woman had experienced power, control, stalking, or harassment at the hands of an intimate partner in the past year, whether she had experienced specific types of violence or violent threats at the hands of an intimate partner in the past year, and whether she had experienced symptoms of Post-Traumatic Stress Disorder related to the incidents in the past month. Variables in Part 5 specify the partner or partners who were responsible for the incidents in the past year, record the type and length of the woman's relationship with each of these partners, and provide detailed information on the one partner she chose to talk about (called "Name"). Variables in Part 6 probe the woman's help-seeking and interventions in the past year. Variables in Part 7 include questions comprising the Campbell Danger Assessment (Campbell, 1993). Part 8 assembles variables pertaining to the chosen abusive partner (Name). Part 9, an event-level file, includes the type and the date of each event the woman discussed in a 12-month retrospective calendar history. Part 10, an incident-level file, includes variables describing each violent incident or threat of violence. There is a unique identifier linking each woman to her set of events or incidents. Part 11 is a person-level file in which the incidents in Part 10 have been aggregated into totals for each woman. Variables in Part 11 include, for example, the total number of incidents during the year, the number of days before the interview that the most recent incident had occurred, and the severity of the most severe incident in the past year. Part 12 is a person-level file that summarizes incident information from the follow-up interviews, including the number of abuse incidents from the initial interview to the last follow-up, the number of days between the initial interview and the last follow-up, and the maximum severity of any follow-up incident. Parts 1-12 contain a unique identifier variable that allows users to link each respondent across files. Parts 13-15 contain data from official records sources and information supplied by proxies for victims of intimate partner homicides in 1995 and 1996 in Chicago. Part 13 contains information about the homicide incidents from the "lethal sample," along with outcomes of the court cases (if any) from the Administrative Office of the Illinois Courts. Variables for Part 13 include the number of victims killed in the incident, the month and year of the incident, the gender, race, and age of both the victim and offender, who initiated the violence, the severity of any other violence immediately preceding the death, if leaving the relationship triggered the final incident, whether either partner was invading the other's home at the time of the incident, whether jealousy or infidelity was an issue in the final incident, whether there was drug or alcohol use noted by witnesses, the predominant motive of the homicide, location of the homicide, relationship of victim to offender, type of weapon used, whether the offender committed suicide after the homicide, whether any criminal charges were filed, and the type of disposition and length of sentence for that charge. Parts 14 and 15 contain data collected using the proxy interview questionnaire (or the interview of the woman offender, if applicable). The questionnaire used for Part 14 was identical to the one used in the clinic sample, except for some extra questions about the homicide incident. The data include only those 76 cases for which at least one interview was conducted. Most variables in Part 14 pertain to the victim or the offender, regardless of gender (unless otherwise labeled). For ease of analysis, Part 15 includes the same 76 cases as Part 14, but the variables are organized from the woman's point of view, regardless of whether she was the victim or offender in the homicide (for the same-sex cases, Part 15 is from the woman victim's point of view). Parts 14 and 15 can be linked by ID number. However, Part 14 includes five sets of variables that were asked only from the woman's perspective in the original questionnaire: household composition, Post-Traumatic Stress Disorder (PTSD), social support network, personal income (as opposed to household income), and help-seeking and intervention. To avoid redundancy, these variables appear only in Part 14. Other variables in Part 14 cover information about the person(s) interviewed, the victim's and offender's age, sex, race/ethnicity, birthplace, employment status at time of death, and level of education, a scale of the victim's and offender's severity of physical abuse in the year prior to the death, the length of the relationship between victim and offender, the number of children belonging to each partner, whether either partner tried to leave and/or asked the other to stay away, the reasons why each partner tried to leave, the longest amount of time each partner stayed away, whether either or both partners returned to the relationship before the death, any known physical or emotional problems sustained by victim or offender, including the four-item Medical Outcomes Study (MOS) scale of depression, drug and alcohol use of the victim and offender, number and type of guns in the household of the victim and offender, Scales of Power and Control (Johnson, 1996) or Stalking and Harassment (Sheridan, 1992) by either intimate partner in the year prior to the death, a modified version of the Conflict Tactics Scale (CTS)

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
Organization logo

Effect of suicide rates on life expectancy dataset

Explore at:
csvAvailable download formats
Dataset updated
Apr 16, 2021
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Filip Zoubek; Filip Zoubek
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

Effect of suicide rates on life expectancy dataset

Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

Data

The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

LICENSE

THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

[1] https://www.kaggle.com/szamil/who-suicide-statistics

[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

Search
Clear search
Close search
Google apps
Main menu