48 datasets found
  1. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  2. Number of suicides India 1971-2022

    • statista.com
    • thefarmdosupply.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of suicides India 1971-2022 [Dataset]. https://www.statista.com/statistics/665354/number-of-suicides-india/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Over *** thousand deaths due to suicides were recorded in India in 2022. Furthermore, majority of suicides were reported in the state of Tamil Nadu, followed by Rajasthan. The number of suicides that year had increased from the previous year. Some of the causes for suicides in the country were due to professional problems, abuse, violence, family problems, financial loss, sense of isolation and mental disorders. Depressive disorders and suicide As of 2015, over ****** million people worldwide suffered from some kind of depressive disorder. Furthermore, over ** percent of the total population in India suffer from different forms of mental disorders as of 2017. There exists a positive correlation between the number of suicide mortality rates and people with select mental disorders as opposed to those without. Risk factors for mental disorders Every ******* person in India suffers from some form of mental disorder. Today, depressive disorders are regarded as the leading contributor not only to disease burden and morbidity worldwide, but even suicide if not addressed. In 2022, the leading cause for suicide deaths in India was due to family problems. The second leading cause was due to illness. Some of the risk factors, relative to developing mental disorders including depressive and anxiety disorders, include bullying victimization, poverty, unemployment, childhood sexual abuse and intimate partner violence.

  3. Mental Health and Suicide Rates

    • kaggle.com
    Updated Jul 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twinkle Khanna (2020). Mental Health and Suicide Rates [Dataset]. https://www.kaggle.com/twinkle0705/mental-health-and-suicide-rates/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 15, 2020
    Dataset provided by
    Kaggle
    Authors
    Twinkle Khanna
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Context

    Close to 800 000 people die due to suicide every year, which is one person every 40 seconds. Suicide is a global phenomenon and occurs throughout the lifespan. Effective and evidence-based interventions can be implemented at population, sub-population and individual levels to prevent suicide and suicide attempts. There are indications that for each adult who died by suicide there may have been more than 20 others attempting suicide.

    Suicide is a complex issue and therefore suicide prevention efforts require coordination and collaboration among multiple sectors of society, including the health sector and other sectors such as education, labour, agriculture, business, justice, law, defense, politics, and the media. These efforts must be comprehensive and integrated as no single approach alone can make an impact on an issue as complex as suicide.

    Do leave an upvote if you found this dataset useful!

  4. Suicides in England and Wales

    • ons.gov.uk
    xlsx
    Updated Oct 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Suicides in England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/suicidesintheunitedkingdomreferencetables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Number of suicides and suicide rates by sex and age in England and Wales. Includes information on conclusion type, the proportion of suicides by method, and the median registration delay.

  5. Mental Health and suicide Analyst

    • kaggle.com
    Updated Jan 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PRAVEEN KUMAR PJ (2023). Mental Health and suicide Analyst [Dataset]. https://www.kaggle.com/datasets/praveendj/mental-health-and-suicide-analyst/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 31, 2023
    Dataset provided by
    Kaggle
    Authors
    PRAVEEN KUMAR PJ
    Description

    Close to 800 000 people die due to suicide every year, which is one person every 40 seconds. Suicide is a global phenomenon and occurs throughout the lifespan. Effective and evidence-based interventions can be implemented at population, sub-population and individual levels to prevent suicide and suicide attempts. There are indications that for each adult who died by suicide there may have been more than 20 others attempting suicide.

    Suicide is a complex issue and therefore suicide prevention efforts require coordination and collaboration among multiple sectors of society, including the health sector and other sectors such as education, labour, agriculture, business, justice, law, defense, politics, and the media. These efforts must be comprehensive and integrated as no single approach alone can make an impact on an issue as complex as suicide.

  6. Deaths from Suicide - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jul 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Deaths from Suicide - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/deaths-from-suicide
    Explore at:
    Dataset updated
    Jul 11, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  7. m

    Suicide data & reports

    • mass.gov
    Updated Dec 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Division of Violence and Injury Prevention (2021). Suicide data & reports [Dataset]. https://www.mass.gov/info-details/suicide-data-reports
    Explore at:
    Dataset updated
    Dec 8, 2021
    Dataset provided by
    Department of Public Health
    Bureau of Community Health and Prevention
    Division of Violence and Injury Prevention
    Area covered
    Massachusetts
    Description

    Download data on suicides in Massachusetts by demographics and year. This page also includes reporting on military & veteran suicide, and suicides during COVID-19.

  8. Deaths; suicide (residents), various themes

    • cbs.nl
    • ckan.mobidatalab.eu
    • +2more
    xml
    Updated Aug 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2025). Deaths; suicide (residents), various themes [Dataset]. https://www.cbs.nl/en-gb/figures/detail/7022eng
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 28, 2025
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1950 - 2024
    Area covered
    The Netherlands
    Description

    This table contains the number of victims of suicide arranged by marital status, method, motives, age and sex. They represent the number deaths by suicide in the resident population of the Netherlands.

    The figures in this table are equal to the suicide figures in the causes of death statistics, because they are based on the same files. The causes of death statistics do not contain information on the motive of suicide. For the years 1950-1995, this information is obtained from a historical data file on suicides. For the years 1996-now the motive is taken from the external causes of death (Niet-Natuurlijke dood) file. Before the 9th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD), i.e. for the years 1950-1978, it was not possible to code "jumping in front of train/metro". For these years 1950-1978 "jumping in front of train/metro" has been left empty, and it has been counted in the group "other method".

    Relative figures have been calculated per 100 000 of the corresponding population group. The figures are calculated based on the average population of the corresponding year.

    Data available from: 1950

    Status of the figures: The figures up to and including 2023 are final, the figures for 2024 are provisional.

    Changes as of August 28th 2025: The provisional figures for 2024 are added.

    When will new figures be published: In the first quarter of 2026 the final figures for 2024 will be published.

  9. d

    Deaths from Suicide - Dataset - Datopian CKAN instance

    • demo.dev.datopian.com
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Deaths from Suicide - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/lcc--deaths-from-suicide
    Explore at:
    Dataset updated
    Oct 7, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  10. T

    Suicides And Attempts

    • data.cincinnati-oh.gov
    csv, xlsx, xml
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cincinnati (2025). Suicides And Attempts [Dataset]. https://data.cincinnati-oh.gov/Safety/Suicides-And-Attempts/w92t-np3h
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 8, 2025
    Authors
    City of Cincinnati
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Fire Incident data includes all fire incident responses. This includes emergency medical services (EMS) calls, fires, rescue incidents, and all other services handled by the Fire Department.

    The source of this data is the City of Cincinnati's computer aided dispatch (CAD) database.

    This data is updated daily.

    DISCLAIMER: In compliance with privacy laws, all Public Safety datasets are anonymized and appropriately redacted prior to publication on the City of Cincinnati’s Open Data Portal. This means that for all public safety datasets: (1) the last two digits of all addresses have been replaced with “XX,” and in cases where there is a single digit street address, the entire address number is replaced with "X"; and (2) Latitude and Longitude have been randomly skewed to represent values within the same block area (but not the exact location) of the incident.

  11. Suicides

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Suicides [Dataset]. https://hub.arcgis.com/datasets/sccphd::suicides/about
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of suicide deaths by sex, race/ethnicity, age; trends if available. Source: Santa Clara County Public Health Department, VRBIS, 2007-2016. Data as of 05/26/2017; U.S. Census Bureau; 2010 Census, Tables PCT12, PCT12H, PCT12I, PCT12J, PCT12K, PCT12L, PCT12M; generated by Baath M.; using American FactFinder; Accessed June 20, 2017. METADATA:Notes (String): Lists table title, notes and sourcesYear (String): Year of data; presented as pooled years (2007 to 2016)Category (String): Lists the category representing the data: Santa Clara County is for total population, age categories as follows: <18, 18 to 44, 45 to 64, 65+; 10 to 19, 20 to 24; 10 to 24; <1, 1 to 4, 5 to 14, 15 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74, 75 to 84, 85+; United States and Healthy People 2020 targetRate per 100,000 people (Numeric): Suicide rate. Rates for age groups are reported as age-specific rates per 100,000 people. All other rates are age-adjusted rates per 100,000 people.

  12. f

    Data Sheet 1_How many people die by suicide each year? Not 727,000: a...

    • frontiersin.figshare.com
    docx
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicola Meda; Ludovica Angelozzi; Matteo Poletto; Angelo Patane’; Josephine Zammarrelli; Irene Slongo; Fabio Sambataro; Diego De Leo (2025). Data Sheet 1_How many people die by suicide each year? Not 727,000: a systematic review and meta-analysis of suicide underreporting across 71 countries over 122 years.docx [Dataset]. http://doi.org/10.3389/fpsyt.2025.1609580.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Aug 12, 2025
    Dataset provided by
    Frontiers
    Authors
    Nicola Meda; Ludovica Angelozzi; Matteo Poletto; Angelo Patane’; Josephine Zammarrelli; Irene Slongo; Fabio Sambataro; Diego De Leo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundSuicide underreporting undermines accurate public health assessments and resource allocation for suicide prevention. This study aims at synthesizing evidence on suicide underreporting and to estimate a global underreporting rate.MethodsWe conducted a PRISMA-compliant systematic review on suicide underreporting, following a pre-registered protocol. A meta-analytical synthesis was also conducted. Quantitative data from individual studies was extracted to provide an overall global estimate of suicide underreporting (42 studies covering 71 countries out of the initial 770 unique studies, spanning 1900–2021). Most studies used retrospective institutional datasets to estimate underreporting through reclassification of undetermined deaths or comparisons across databases. Demographic and geographic disparities were also examined.ResultsThe 42 studies selected provided some quantitative data on suicide underreporting for general or specific populations. 14 of these studies provided data to be meta-analyzed. The global suicide underreporting rate was estimated to be 17.9% (95% CI: 10.9–28.1%) with large differences between countries with high and low/very low data quality. In this scenario, the last WHO estimates of suicide deaths – corrected for underreporting – would be more than one million (1,000,638; 95% CI: 859,511–1,293,006) and not 727,000 suicides per year. Underreporting was higher in low- and middle-income countries (LMICs) with incomplete death registration systems, such as India and China (34.9%; 95% CI 20.3–53%), while high-income countries exhibited lower rates (11.5%; 95% CI 6.6–19.3%). Contributing factors included stigma, religiosity, limited forensic resources, and inconsistent use of International Classification of Diseases (ICD) codes. Gender and age disparities were notable; Female suicides and those among younger or older individuals were more likely to be misclassified.DiscussionAddressing suicide underreporting requires improving death registration systems globally, particularly in LMICs. Standardizing ICD usage, improving forensic capacity, and reducing stigma are critical steps to ensure accurate data. Heterogeneity, geographical disparities, temporal biases, and invariance of suicide underreporting for countries with low-quality data demand further corroboration of these findings.Systematic Review Registrationhttps://osf.io/9j8dg.

  13. SHIP Suicide Rate 2009-2021

    • healthdata.gov
    • opendata.maryland.gov
    • +2more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). SHIP Suicide Rate 2009-2021 [Dataset]. https://healthdata.gov/State/SHIP-Suicide-Rate-2009-2021/qzyq-bg7e
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    opendata.maryland.gov
    Description
  14. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(24235858), csv(11738570), csv(15127221), csv(60676655), csv(1128641), csv(60023260), csv(28125832), csv(75015194), zip, csv(74043128), csv(74351424), csv(74497014), csv(60201673), csv(74689382), csv(73906266), csv(60517511), csv(52019564), csv(51592721), csv(5095), csv(25609913)Available download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  15. f

    Prevalence of Suicidal Ideation in Chinese College Students: A Meta-Analysis...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    doc
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhan-Zhan Li; Ya-Ming Li; Xian-Yang Lei; Dan Zhang; Li Liu; Si-Yuan Tang; Lizhang Chen (2023). Prevalence of Suicidal Ideation in Chinese College Students: A Meta-Analysis [Dataset]. http://doi.org/10.1371/journal.pone.0104368
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Zhan-Zhan Li; Ya-Ming Li; Xian-Yang Lei; Dan Zhang; Li Liu; Si-Yuan Tang; Lizhang Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundAbout 1 million people worldwide commit suicide each year, and college students with suicidal ideation are at high risk of suicide. The prevalence of suicidal ideation in college students has been estimated extensively, but quantitative syntheses of overall prevalence are scarce, especially in China. Accurate estimates of prevalence are important for making public policy. In this paper, we aimed to determine the prevalence of suicidal ideation in Chinese college students.Objective and MethodsDatabases including PubMed, Web of Knowledge, Chinese Web of Knowledge, Wangfang (Chinese database) and Weipu (Chinese database) were systematically reviewed to identify articles published between 2004 to July 2013, in either English or Chinese, reporting prevalence estimates of suicidal ideation among Chinese college students. The strategy also included a secondary search of reference lists of records retrieved from databases. Then the prevalence estimates were summarized using a random effects model. The effects of moderator variables on the prevalence estimates were assessed using a meta-regression model.ResultsA total of 41 studies involving 160339 college students were identified, and the prevalence ranged from 1.24% to 26.00%. The overall pooled prevalence of suicidal ideation among Chinese college students was 10.72% (95%CI: 8.41% to 13.28%). We noted substantial heterogeneity in prevalence estimates. Subgroup analyses showed that prevalence of suicidal ideation in females is higher than in males.ConclusionsThe prevalence of suicidal ideation in Chinese college students is relatively high, although the suicide rate is lower compared with the entire society, suggesting the need for local surveys to inform the development of health services for college students.

  16. e

    Deaths from Suicide

    • data.europa.eu
    csv, html
    Updated Nov 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2018). Deaths from Suicide [Dataset]. https://data.europa.eu/data/datasets/deaths-from-suicide?locale=en
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Nov 12, 2018
    Dataset authored and provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages.

    Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health.

    Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.

    The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data.

    Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  17. Statewide Death Profiles

    • data.chhs.ca.gov
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(2026589), csv(463460), csv(200270), csv(5034), csv(5401561), csv(16301), csv(164006), csv(4689434), csv(385695), csv(419332), zipAvailable download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  18. Suicide death trends

    • data-sccphd.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Suicide death trends [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/suicide-death-trends
    Explore at:
    Dataset updated
    Feb 23, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of suicide deaths for Santa Clara County residents. The data are provided for the total county population and by sex and race/ethnicity. Data trends are presented from 2007 to 2016. Source: Santa Clara County Public Health Department, VRBIS, 2007-2016. Data as of 05/26/2017; U.S. Census Bureau, 2010 Census.METADATA:Notes (String): Lists table title, notes and sourceYear (String): Year of death Category (String): Lists the category representing the data: Santa Clara County is for total population, sex: Male and Female, race/ethnicity: African American, Asian/Pacific Islander, Latino and White (non-Hispanic White only) and Asian/Pacific Islander subgroups: Asian Indian, Chinese. Filipino, Korean and Vietnamese.Age adjusted rate per 100,000 people (Numeric): The Tenth Revision of the International Classification of Diseases codes (ICD-10) are used for coding causes of death. Age-adjusted rate is calculated using 2000 U.S. Standard Population. Suicide rate is number of suicide deaths in a year per 100,000 people in the same time period.

  19. f

    What Are Reasons for the Large Gender Differences in the Lethality of...

    • plos.figshare.com
    doc
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roland Mergl; Nicole Koburger; Katherina Heinrichs; András Székely; Mónika Ditta Tóth; James Coyne; Sónia Quintão; Ella Arensman; Claire Coffey; Margaret Maxwell; Airi Värnik; Chantal van Audenhove; David McDaid; Marco Sarchiapone; Armin Schmidtke; Axel Genz; Ricardo Gusmão; Ulrich Hegerl (2023). What Are Reasons for the Large Gender Differences in the Lethality of Suicidal Acts? An Epidemiological Analysis in Four European Countries [Dataset]. http://doi.org/10.1371/journal.pone.0129062
    Explore at:
    docAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Roland Mergl; Nicole Koburger; Katherina Heinrichs; András Székely; Mónika Ditta Tóth; James Coyne; Sónia Quintão; Ella Arensman; Claire Coffey; Margaret Maxwell; Airi Värnik; Chantal van Audenhove; David McDaid; Marco Sarchiapone; Armin Schmidtke; Axel Genz; Ricardo Gusmão; Ulrich Hegerl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    BackgroundIn Europe, men have lower rates of attempted suicide compared to women and at the same time a higher rate of completed suicides, indicating major gender differences in lethality of suicidal behaviour. The aim of this study was to analyse the extent to which these gender differences in lethality can be explained by factors such as choice of more lethal methods or lethality differences within the same suicide method or age. In addition, we explored gender differences in the intentionality of suicide attempts.Methods and FindingsMethods. Design: Epidemiological study using a combination of self-report and official data. Setting: Mental health care services in four European countries: Germany, Hungary, Ireland, and Portugal. Data basis: Completed suicides derived from official statistics for each country (767 acts, 74.4% male) and assessed suicide attempts excluding habitual intentional self-harm (8,175 acts, 43.2% male).Main Outcome Measures and Data Analysis. We collected data on suicidal acts in eight regions of four European countries participating in the EU-funded “OSPI-Europe”-project (www.ospi-europe.com). We calculated method-specific lethality using the number of completed suicides per method * 100 / (number of completed suicides per method + number of attempted suicides per method). We tested gender differences in the distribution of suicidal acts for significance by using the χ2-test for two-by-two tables. We assessed the effect sizes with phi coefficients (φ). We identified predictors of lethality with a binary logistic regression analysis. Poisson regression analysis examined the contribution of choice of methods and method-specific lethality to gender differences in the lethality of suicidal acts.Findings Main ResultsSuicidal acts (fatal and non-fatal) were 3.4 times more lethal in men than in women (lethality 13.91% (regarding 4106 suicidal acts) versus 4.05% (regarding 4836 suicidal acts)), the difference being significant for the methods hanging, jumping, moving objects, sharp objects and poisoning by substances other than drugs. Median age at time of suicidal behaviour (35–44 years) did not differ between males and females. The overall gender difference in lethality of suicidal behaviour was explained by males choosing more lethal suicide methods (odds ratio (OR) = 2.03; 95% CI = 1.65 to 2.50; p < 0.000001) and additionally, but to a lesser degree, by a higher lethality of suicidal acts for males even within the same method (OR = 1.64; 95% CI = 1.32 to 2.02; p = 0.000005). Results of a regression analysis revealed neither age nor country differences were significant predictors for gender differences in the lethality of suicidal acts. The proportion of serious suicide attempts among all non-fatal suicidal acts with known intentionality (NFSAi) was significantly higher in men (57.1%; 1,207 of 2,115 NFSAi) than in women (48.6%; 1,508 of 3,100 NFSAi) (χ2 = 35.74; p < 0.000001).Main limitations of the studyDue to restrictive data security regulations to ensure anonymity in Ireland, specific ages could not be provided because of the relatively low absolute numbers of suicide in the Irish intervention and control region. Therefore, analyses of the interaction between gender and age could only be conducted for three of the four countries. Attempted suicides were assessed for patients presenting to emergency departments or treated in hospitals. An unknown rate of attempted suicides remained undetected. This may have caused an overestimation of the lethality of certain methods. Moreover, the detection of attempted suicides and the registration of completed suicides might have differed across the four countries. Some suicides might be hidden and misclassified as undetermined deaths.ConclusionsMen more often used highly lethal methods in suicidal behaviour, but there was also a higher method-specific lethality which together explained the large gender differences in the lethality of suicidal acts. Gender differences in the lethality of suicidal acts were fairly consistent across all four European countries examined. Males and females did not differ in age at time of suicidal behaviour. Suicide attempts by males were rated as being more serious independent of the method used, with the exceptions of attempted hanging, suggesting gender differences in intentionality associated with suicidal behaviour. These findings contribute to understanding of the spectrum of reasons for gender differences in the lethality of suicidal behaviour and should inform the development of gender specific strategies for suicide prevention.

  20. Suicide attempts/ideation related hospitalization trends

    • data-sccphd.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Suicide attempts/ideation related hospitalization trends [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/suicide-attempts-ideation-related-hospitalization-trends
    Explore at:
    Dataset updated
    Feb 24, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of patient discharges after being hospitalized due to suicide attempts/ideation for Santa Clara County residents. The data are provided for the total county population and by sex and race/ethnicity. The data trends are presented from 2007 to 2014. Source: Office of Statewide Planning and Development, 2007-2014 Patient Discharge Data; U.S. Census Bureau, 2010 Census.METADATA:Notes (String): Lists table title, notes and sourceYear (Numeric): Year of hospital dischargeCategory (String): Lists the category representing the data: Santa Clara County is for total population, sex: Male and Female, and race/ethnicity: African American, Asian/Pacific Islander, Latino and White (non-Hispanic White only).Age adjusted rate per 100,000 people (String): The Ninth Revision of the International Classification of Diseases codes (ICD-9) are used for coding patient discharge data. Age-adjusted rate is calculated using 2000 U.S. Standard Population. Rate of hospitalization due to suicide attempt/ideation is number of related hospital discharges in a year per 100,000 people in the same time period. Data are not presented if the number of hospital discharges is 15 or less.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
Organization logo

Effect of suicide rates on life expectancy dataset

Explore at:
csvAvailable download formats
Dataset updated
Apr 16, 2021
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Filip Zoubek; Filip Zoubek
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

Effect of suicide rates on life expectancy dataset

Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

Data

The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

LICENSE

THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

[1] https://www.kaggle.com/szamil/who-suicide-statistics

[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

Search
Clear search
Close search
Google apps
Main menu