Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A comprehensive record of Tuberculosis incidence across the nations of the world. Within a time range of 22 years, the features tell the incurrence rates, total incurrences, mortality rates, percentage of tb cases caused by HIV/AIDs.
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset provides detailed estimates of tuberculosis (TB) incidence and mortality in India, categorized by different levels of uncertainty (low, middle, high). The data is modeled using an in-country approach.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides comprehensive insights into global tuberculosis (TB) trends from the year 2000 to 2024 across multiple countries and regions. It includes 3,000 records covering TB incidence, mortality, treatment success, drug-resistant cases, and healthcare access, making it an invaluable resource for public health analysis, epidemiological research, and predictive modeling.
Key Features: Global Coverage: Includes data from multiple countries across different income levels.
Longitudinal Analysis: Spans over two decades (2000-2024).
Epidemiological Metrics: TB cases, deaths, incidence/mortality rates, treatment success rates, and drug-resistant cases.
Health & Socioeconomic Factors: GDP per capita, healthcare expenditure, urbanization, malnutrition, and smoking prevalence.
Healthcare Accessibility: Number of TB doctors, hospitals, and access to health services.
Vaccination & HIV Testing: BCG vaccination coverage and HIV testing rates for TB patients.
This dataset is ideal for policymakers, researchers, and data analysts aiming to study TB trends, evaluate healthcare interventions, and develop predictive models for disease control.
Facebook
TwitterBackgroundWe aimed to determine the trend of TB-related deaths during the COVID-19 pandemic.MethodsTB-related mortality data of decedents aged ≥25 years from 2006 to 2021 were analyzed. Excess deaths were estimated by determining the difference between observed and projected mortality rates during the pandemic.ResultsA total of 18,628 TB-related deaths were documented from 2006 to 2021. TB-related age-standardized mortality rates (ASMRs) were 0.51 in 2020 and 0.52 in 2021, corresponding to an excess mortality of 10.22 and 9.19%, respectively. Female patients with TB demonstrated a higher relative increase in mortality (26.33 vs. 2.17% in 2020; 21.48 vs. 3.23% in 2021) when compared to male. Female aged 45–64 years old showed a surge in mortality, with an annual percent change (APC) of −2.2% pre-pandemic to 22.8% (95% CI: −1.7 to 68.7%) during the pandemic, corresponding to excess mortalities of 62.165 and 99.16% in 2020 and 2021, respectively; these excess mortality rates were higher than those observed in the overall female population ages 45–64 years in 2020 (17.53%) and 2021 (33.79%).ConclusionThe steady decline in TB-related mortality in the United States has been reversed by COVID-19. Female with TB were disproportionately affected by the pandemic.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from tuberculosis. Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Facebook
TwitterThis dataset contains estimates for age-standardized mortality rates from lower respiratory infections (LRIs), diarrheal diseases, HIV/AIDS, meningitis, hepatitis, and tuberculosis between 1980 t0 2014.
Facebook
Twitterhttps://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis. TB remains a significant global health problem. The UK has one of the highest rates of TB in Europe, with almost 5000 new cases notified in 2019. Within the UK, Birmingham and the West Midlands are particular hotspots for TB, with over 300 cases of active disease and approximately 10 times that of new latent infections diagnosed each year.
Birmingham and the West Midlands have experienced particularly high rates of COVID-19 during the pandemic and there is increasing evidence that individuals of Black, Asian and minority ethnicities (BAME) experience the most significant morbidity and highest mortality rates due to COVID-19. These groups also experience the highest burdens of TB, both in the UK and overseas.
Epidemiological data suggests that current and previous tuberculosis (TB) increase the risk of COVID-19 mortality and severe disease. There is also evidence of immunopathogenic overlap between the two infections with in vitro studies finding that SARS-CoV-2 infection is increased in human macrophages cultured in the inflammatory milieu of TB-infected macrophages.
This dataset would enable a deeper analysis of demography and clinical outcomes associated with COVID-19 in patients with concurrent TB.
PIONEER geography: the West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.
EHR. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.
Scope: All hospitalised patients admitted to UHB during the COVID-19 pandemic, curated to focus on Mycobacterium tuberculosis and SARS-CoV-2. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to acute care process (A&E, triage, IP, ITU admissions), presenting complaint, DNAR teal, all physiology readings (AVPU scale, Covid CFS, blood pressure, respiratory rate, oxygen saturations and others), all blood results, imaging reports, all prescribed & administered treatments, all outcomes.
Available supplementary data: Matched controls; ambulance, OMOP data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
TwitterObjectiveTuberculosis (TB) is a major cause of ill health and one of the leading causes of death worldwide. The first step in developing strategies to reduce TB mortality is to identify the direct causes of death in patients with TB and the risk factors for each cause.MethodsData on patients with TB systemically collected from the National Surveillance System of South Korea from January 2019 to December 2020 were included in this study. We analyzed the clinical characteristics associated with TB and non-TB-related deaths, including TB-related symptoms, comorbidities, and radiographic and microbiological findings.ResultsOf the total of 12,340 patients with TB, 61% were males with a mean age of 61.3 years. During the follow-up period, the overall mortality rate was 10.6%, with TB-related deaths accounting for 21.3% of all TB deaths. The median survival time in the TB-related death group was 22 days. TB-related death was associated with older age, lower body mass index (BMI), dyspnea, fever, general weakness, bilateral radiographic patterns, and acid-fast bacilli (AFB)-positive smears. Non-TB-related deaths were associated with older age, male sex, lower BMI, comorbidities of heart, liver, kidney, and central nervous system (CNS) diseases, CNS TB involvement, the presence of dyspnea, general weakness, and bilateral radiographic patterns.ConclusionPatients with high-risk TB must be identified through cause-specific mortality analysis, and the mortality rate must be reduced through intensive monitoring of patients with a high TB burden and comorbidities.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Tuberculosis Mortality in Brazil 2024 - 2028 Discover more data with ReportLinker!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Every year, over 10 million people worldwide contract tuberculosis (TB). The 2024 World Health Organisation TB global report indicated that 32% of the total deaths were children and adolescents under 15 years old. The scale of TB highlights the urgent need for action to end the global epidemic by 2030. This study aims to evaluate the mortality rate, survival probabilities, and factors associated with mortality among children and adolescents with TB in Tanzania. A retrospective cohort study was conducted from the Tanzania National Tuberculosis and Leprosy Programme data, which included individuals under 15 years old who began TB treatment between 1st January 2023 and 31st December 2023. The last patient’s end-of-follow-up time was on 16th June 2024. The primary outcome of interest in our study was death. We calculated overall and covariate-specific TB mortality rates per 1,000 person-months. The Kaplan-Meier curve was employed to estimate survival probabilities. A total of 10,491 children and adolescents receiving TB treatment were included, nearly half of whom, 5,940 (56.62%), were under age 5 years. A total of 177 (1.69%) died, resulting in a crude mortality rate of 2.86 per 1,000 person-months. Furthermore, TB and HIV co-infection individuals had five times the risk of death (aHR = 5.03, 95% CI = 3.40-7.47, p
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A quarter of the global human population is estimated to be latently infected by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). TB remains the global leading cause of death by a single pathogen and ranks among the top-10 causes of overall global mortality. Current immunodiagnostic tests cannot discriminate between latent, active and past TB, nor predict progression of latent infection to active disease. The only registered TB vaccine, Bacillus Calmette-Guérin (BCG), does not adequately prevent pulmonary TB in adolescents and adults, thus permitting continued TB-transmission. Several Mtb proteins, mostly discovered through IFN-γ centered approaches, have been proposed as targets for new TB-diagnostic tests or -vaccines. Recently, however, we identified novel Mtb antigens capable of eliciting multiple cytokines, including antigens that did not induce IFN-γ but several other cytokines. These antigens had been selected based on high Mtb gene-expression in the lung in vivo, and have been termed in vivo expressed (IVE-TB) antigens. Here, we extend and validate our previous findings in an independent Southern European cohort, consisting of adults and adolescents with either LTBI or TB. Our results confirm that responses to IVE-TB antigens, and also DosR-regulon and Rpf stage-specific Mtb antigens are marked by multiple cytokines, including strong responses, such as for TNF-α, in the absence of detectable IFN-γ production. Except for TNF-α, the magnitude of those responses were significantly higher in LTBI subjects. Additional unbiased analyses of high dimensional flow-cytometry data revealed that TNF-α+ cells responding to Mtb antigens comprised 17 highly heterogeneous cell types. Among these 17 TNF-α+ cells clusters identified, those with CD8+TEMRA or CD8+CD4+ phenotypes, defined by the expression of multiple intracellular markers, were the most prominent in adult LTBI, while CD14+ TNF-α+ myeloid-like clusters were mostly abundant in adolescent LTBI. Our findings, although limited to a small cohort, stress the importance of assessing broader immune responses than IFN-γ alone in Mtb antigen discovery as well as the importance of screening individuals of different age groups. In addition, our results provide proof of concept showing how unbiased multidimensional multiparametric cell subset analysis can identify unanticipated blood cell subsets that could play a role in the immune response against Mtb.
Facebook
TwitterBACKGROUND: Tuberculosis (TB) has killed more people than any other infection since records began. The Sustainable Development Goals and the World Health Organisation “End TB” Strategy prioritise key targets for reducing mortality due to TB. However, there seems to be limited research evidence available to inform how this target of reducing TB mortality may best be achieved. OBJECTIVES: We aim to describe and categorise the published literature concerning mortality due to TB and then to review, critically appraise and synthesise the evidence that interventions decrease mortality due to TB. METHODS: The Pubmed database will be searched. Screening and selection of eligible publications will be made by 2 independent reviewers and a third will be asked to resolve any discrepancies. Key information from selected publications will be extracted using a shared cloud-based spreadsheet. Quantitative assessments of the impacts of trial interventions on TB mortality will be extracted and synthesised using meta-analysis, if possible. When appropriate, the quality of trial evidence will be assessed.This systematic review and meta-analysis is registered with the PROSPERO database (CRD42023387877). CONCLUSIONS: We will review the current published evidence concerning TB mortality and how it may best be prevented. We aim to clarify research gaps and also to synthesise evidence in order to guide future policy and research.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Tuberculosis Mortality in the US 2023 - 2027 Discover more data with ReportLinker!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Humanitarian Data Exchange [source]
This dataset provides comprehensive insights into critical health conditions around the world, such as mortality rate, malnutrition levels, and frequency of preventable diseases. It documents the prevalence of life-threatening diseases like malaria and tuberculosis, and are tracked alongside key health indicators like adult mortality rates, HIV prevalence, physicians per 10,000 people ratio and public health expenditures. Such metrics provide us with an accurate picture of how developed healthcare systems are in certain countries which ultimately leads to improvements in public policy formation and awareness amongst decision-makers. With this data it is possible to observe disparities between different regions of the world which can help inform global strategies for providing equitable care globally. This dataset is a valuable source for researchers interested in understanding global health trends over time or seeking to evaluate regional differences within countries
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive global health outcome data for countries around the world. It includes vital information such as infant mortality rates, child malnutrition rates, adult mortality rates, deaths due to malaria and tuberculosis, HIV prevalence rates, life expectancy at age 60 and public health expenditure. This dataset can be used to gain valuable insight into the challenges faced by different countries in providing a good quality of life for their citizens.
To use this dataset, first identify what questions you need answered and what outcomes you are looking to measure. You may want to look at specific disease-based indicators (e.g. malaria or tuberculosis), health-related indicators (e.g., nutrition), or overall population markers (e.g., life expectancy).
Then decide which data points from the provided fields will help answer your questions and provide the results needed - e.g,. infant mortality rate or HIV prevalence rate - extracting these values from relevant columns like “Infants lacking immunization (% of one-year-olds) Measles 2013” or “HIV prevalence, adult (% ages 15Ð49) 2013” respectively
Next extract other columnwise relevant information - e.g., country name — that could also aid your analysis using tools like Excel or Python's Pandas library; sorting through them based on any metric desired — e..g,, physicians per 10k people — while being mindful that some data points are missing in some cases (denoted by NA).
Finally perform basic analyses with either your own scripting language, like R/Python libraries' numerical functions with accompanying visuals/graphs etc if elucidating trends is desired; drawing meaningful conclusions about overall state of global health outcomes accordingly before making informed decisions thereafter if needed too!
- Create a world health map to visualize the differences in health outcomes across different countries and regions.
- Develop an AI-based decision support tool that identifies optimal public health policies or interventions based on these metrics for different countries.
- Design a dashboard or web app that displays and updates this data in real-time, to allow users to compare the current state of global health indicators and benchmark them against historical figures
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: health-outcomes-csv-1.csv | Column name | Description | |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| | Country | The name of the country. (String) ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo estimate the epidemic trends of tuberculosis (TB) in 30 high burden countries (HBCs) over the past 30 years, which is crucial for tracking the status of disease control, especially at the country level.MethodsAnnual data on incidence and mortality of TB in these 30 HBCs were extracted from the Global Burden of Disease database. The average annual percent change (AAPC) was used to evaluate the trends of incidence and mortality. The trajectory analysis was used to identify different trends among the subgroup countries. The predicted incidence and mortality rates in 2025, 2030, and 2035 were also calculated.ResultsThe incidence and mortality decreased in most of the HBCs. The AAPCs of incidence ranged between −4.0 (Indonesia) and −0.2% (DR Congo) (all p < 0.05). The incidence trends in Lesotho (AAPC: 0%, 95% CI: −0.4, 0.3, p = 0.8) and South Africa (AAPC: −0.2%, 95% CI: −0.5, 0, p = 0.1) were stable, and increased in Kenya with AAPC of 0.1% (95% CI: 0.1, 0.2, p < 0.05). The AAPCs for mortality ranged between −5.8 (Ethiopia) and −0.6% (Central African Republic) (all p < 0.05). The mortality trends in DPR Korea (AAPC: 0.1%, 95% CI: −0.3, 0.4, p = 0.6) and Russian Federation (AAPC: −0.5%, 95% CI: −1.9, 0.9, p = 0.5) were stable, and increased in Lesotho and Zimbabwe with AAPC of 1.3% (95% CI: 1.1, 1.4, p < 0.05) and 1.6% (95% CI: 1.0, 2.2, p < 0.05), respectively. Trajectory analysis showed that the Central African Republic, Lesotho, Cambodia, Namibia, and South Africa had higher incidences, and the Central African Republic had higher mortality. Brazil and China had relatively lower rates of incidence and mortality. Predictions showed that reduction rates of incidence and mortality could hardly be reached compared with those set for the global targets for the majority HBCs.ConclusionsThe disease burden of TB has been reduced among the majority HBCs over the last three decades. According to the current control levels, achieving the ambitious global targets at the country level for these 30 HBCs is challenging.
Facebook
TwitterAbstract INTRODUCTION: Tuberculosis (TB) is the most common infectious disease in the world. We aimed to analyze the spatial risk of tuberculosis mortality and to verify associations in high-risk areas with social vulnerability. METHODS: This was an ecological study. The scan statistic was used to detect areas at risk, and the Bivariate Moran Index was used to verify relationships between variables. RESULTS: High-risk areas of tuberculosis mortality were statistically significantly associated with domain 2 of the Social Vulnerability Index (I=0.010; p=0.001). CONCLUSIONS: This study provides evidence regarding areas with high risk and that vulnerability is a determinant of TB mortality.
Facebook
TwitterThis dataset provides estimates for age-standardized mortality rates by cause and sex at the state level and the municipality level for each state of Brazil for 2001-2015. Data comes from the Institute for Health Metrics and Evaluation (IHME) and the Global Health Data Exchange (GHDE).
Facebook
TwitterData provided by countries to WHO and estimates of TB burden generated by WHO for the Global Tuberculosis Report
https://www.who.int/tb/country/data/download/en/
WHO TB burden estimates
This includes WHO-generated estimates of TB mortality, incidence (including disaggregation by age and sex and incidence of TB/HIV).
https://www.who.int/tb/country/data/download/en/
Photo by Markus Spiske on Unsplash
End TB Strategy.
Facebook
TwitterThe data given here pertains to Tuberculosis spread across countries from 2007 to 2014. Aim of this exercise is to understand how well we can utilize or what insights we can derive from disease spread data collected by international organizations like WHO.
Data: Global Health Observatory data repository (WHO) : http://apps.who.int/gho/data/view.main.57020MP?lang=en
This data has been used in the past to create country wise distribution pattern.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A comprehensive record of Tuberculosis incidence across the nations of the world. Within a time range of 22 years, the features tell the incurrence rates, total incurrences, mortality rates, percentage of tb cases caused by HIV/AIDs.