47 datasets found
  1. NYC Open Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYC Open Data (2019). NYC Open Data [Dataset]. https://www.kaggle.com/datasets/nycopendata/new-york
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    NYC Open Data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/

    Content

    Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:

    • Over 8 million 311 service requests from 2012-2016

    • More than 1 million motor vehicle collisions 2012-present

    • Citi Bike stations and 30 million Citi Bike trips 2013-present

    • Over 1 billion Yellow and Green Taxi rides from 2009-present

    • Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015

    This dataset is deprecated and not being updated.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://opendata.cityofnewyork.us/

    https://cloud.google.com/blog/big-data/2017/01/new-york-city-public-datasets-now-available-on-google-bigquery

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.

    The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.

    Banner Photo by @bicadmedia from Unplash.

    Inspiration

    On which New York City streets are you most likely to find a loud party?

    Can you find the Virginia Pines in New York City?

    Where was the only collision caused by an animal that injured a cyclist?

    What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?

    https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here"> https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png

  2. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2000
    Area covered
    Lesotho, Zimbabwe, Botswana, Namibia, Malawi, Zambia, Africa, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  3. A

    Caribbean Population Estimate 2016

    • data.amerigeoss.org
    • caribbeangeoportal.com
    esri rest, html
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Population Estimate 2016 [Dataset]. https://data.amerigeoss.org/es/dataset/caribbean-population-estimate-2016
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Mar 20, 2020
    Dataset provided by
    Caribbean GeoPortal
    Area covered
    Caribbean
    Description
    This map features a global estimate of human population for 2016 with a focus on the Caribbean region . Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.

    Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.

    Dataset Summary

    Each cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers
    To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:
    • Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system.
    • Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator.
    • No Data: -1
    • Bit Depth: 32-bit signed
    This layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.

    Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.

    What can you do with this layer?

    This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones.
  4. T

    United States Employment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Employment Rate [Dataset]. https://tradingeconomics.com/united-states/employment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jul 31, 2025
    Area covered
    United States
    Description

    Employment Rate in the United States decreased to 59.60 percent in July from 59.70 percent in June of 2025. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. Countries with the most Facebook users 2024

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Countries with the most Facebook users 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Which county has the most Facebook users?

                  There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
    
                  Facebook – the most used social media
    
                  Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
    
                  Facebook usage by device
                  As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
    
  6. Coronavirus Worldwide Dataset

    • kaggle.com
    Updated Aug 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Raj (2020). Coronavirus Worldwide Dataset [Dataset]. https://www.kaggle.com/saurabhraj19/coronavirus-worldwide-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 11, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saurabh Raj
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    The European CDC publishes daily statistics on the COVID-19 pandemic. Not just for Europe, but for the entire world. We rely on the ECDC as they collect and harmonize data from around the world which allows us to compare what is happening in different countries.

    Content

    This dataset has daily level information on the number of affected cases, deaths and recovery etc. from coronavirus. It also contains various other parameters like average life expectancy, population density, smocking population etc. which users can find useful in further prediction that they need to make.

    The data is available from 31 Dec,2019.

    Inspiration

    Give people weekly data so that they can use it to make accurate predictions.

  7. a

    Catholic Carbon Footprint Story Map Map

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  8. d

    Census Tracts in 2020

    • opendata.dc.gov
    • opdatahub.dc.gov
    • +4more
    Updated Aug 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2021). Census Tracts in 2020 [Dataset]. https://opendata.dc.gov/datasets/DCGIS::census-tracts-in-2020/about
    Explore at:
    Dataset updated
    Aug 27, 2021
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Census Tracts from 2020. The TIGER/Line shapefiles are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2020 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2010 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area.

  9. p

    Luxembourg Number Dataset

    • listtodata.com
    .csv, .xls, .txt
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    List to Data (2025). Luxembourg Number Dataset [Dataset]. https://listtodata.com/luxembourg-dataset
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    List to Data
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2025 - Dec 31, 2025
    Area covered
    Belgium, Luxembourg, Australia
    Variables measured
    phone numbers, Email Address, full name, Address, City, State, gender,age,income,ip address,
    Description

    Luxembourg number dataset is a popular platform for cell phone number lists. Many companies in Luxembourg use our phone number library for promotions. Our services have many advantages. Firstly, you will receive our products within 24 hours after confirming your order and payment. Secondly, our phone number list works on all devices, like smartphones, computers, and tablets. Thirdly, our packages are affordable and fit every budget. Moreover, our Luxembourg number dataset also has a filter option. This allows you to find specific numbers based on your needs. You will also receive a free updated telemarketing list six months after purchase. Our database complies with GDPR and provides over 95% accuracy. If there are any errors, we will fix them for free. This ensures you have accurate and current phone numbers, improving your telemarketing efforts. Luxembourg phone data helps you easily contact people or businesses in Luxembourg. Our system is user-friendly and saves time. It also provides additional details like location, age, and gender. We offer a “Do Not Call” list to avoid legal issues in SMS marketing. You can get both a call list and an SMS marketing list in one package. Also, List to Data helps businesses find the right telephone numbers quickly, which makes the process even easier. In addition, our Luxembourg phone data contains both B2B and B2C phone numbers, which support the growth of your business. You can get our customer-friendly after-sales service. We also provide excellent customer service 24/7. If you have any questions or problems, please call us anytime. We are always here to assist you in any situation. Luxembourg phone number list is a valuable tool. It helps you connect with people in Luxembourg. The list includes phone numbers that help companies reach new customers. With name, age, and contact information, it is perfect for marketing. So, use it for promotions, updates, or feedback. This phone number list is available at a reasonable price. So, buy this mobile phone number list at a low price and get huge benefits. Moreover, our Luxembourg phone number list offers good value for your money. Since they update and ensure its accuracy, it helps you get the best results. Moreover, telemarketing saves money and grows your brand. Our cell phone list increases sales. Therefore, you will get great returns on marketing.

  10. SpartaCov - Detect Covid from cough

    • kaggle.com
    Updated Sep 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neptune Apps (2021). SpartaCov - Detect Covid from cough [Dataset]. https://www.kaggle.com/datasets/neptuneapps/spartacov-detect-covid-from-cough/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 7, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Neptune Apps
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Spartacus was a slave that broke its chains. Nowadays, we are chained by COVID-19 that limits us in our fundamental rights. A quick and effective solution must therefore be found.

    In 2020, some medical researchers announced that Covid-19 could be detected from cough recording. The idea is simple: if we can develop an app that everyone can download and test at home if he has COVID-19, it could help to break the chain.

    Content

    This Dataset gather normal coughs and COVID-19 coughs. All COVID-19 coughs are taken from internet from very different sources of people that had COVID-19 (people reporting their journey having COVID etc).

    All normal coughs are taken from royalty-free sounds.

    Acknowledgements

    This dataset is used by the SpartaCov App. The SpartaCov App is trying to let people record their cough with just their smartphone and tell us if they have Covid or not. The github file is available here: https://github.com/NeptuneApps10/spartacov This dataset is only trying to help in the fight against COVID-19.

    Demo Videos: - SpartaCov Covid-19 Test (for patient) https://www.youtube.com/watch?v=PyUAqFJ0yYA

    Inspiration

    If you want to help or have any knowledge in this field, you can reach us! Contact: neptuneappscontact@gmail.com

  11. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  12. Instagram: countries with the highest audience reach 2024

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: countries with the highest audience reach 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, Bahrain was the country with the highest Instagram audience reach with 95.6 percent. Kazakhstan also had a high Instagram audience penetration rate, with 90.8 percent of the population using the social network. In the United Arab Emirates, Turkey, and Brunei, the photo-sharing platform was used by more than 85 percent of each country's population.

  13. h

    body-measurements-dataset

    • huggingface.co
    Updated Jul 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2023). body-measurements-dataset [Dataset]. https://huggingface.co/datasets/TrainingDataPro/body-measurements-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 11, 2023
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Body Measurements Dataset

    The dataset consists of a compilation of people's photos along with their corresponding body measurements. It is designed to provide information and insights into the physical appearances and body characteristics of individuals. The dataset includes a diverse range of subjects representing different age groups, genders, and ethnicities. The photos are captured in a standardized manner, depicting individuals in a front and side positions. The images aim to… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/body-measurements-dataset.

  14. f

    Population Estimates by Census Tract, New York State, by Age and Sex,...

    • figshare.com
    txt
    Updated Jun 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francis P. Boscoe (2019). Population Estimates by Census Tract, New York State, by Age and Sex, 1990-2016. [Dataset]. http://doi.org/10.6084/m9.figshare.6813029.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 21, 2019
    Dataset provided by
    figshare
    Authors
    Francis P. Boscoe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    This file contains population estimates by age and sex and single year for census tracts in New York State, from 1990-2016.Iterative proportional fitting was used to develop populations that are consistent with official Census Bureau tract-level populations from 1990, 2000, and 2010 and single-year county-level population estimates published by the SEER program of the National Cancer Institute (https://seer.cancer.gov/popdata/). The Longitudinal Tract Database (LTDB) (https://s4.ad.brown.edu/projects/diversity/researcher/bridging.htm) was used to report populations using 2010 census tract boundaries.In effect, the approach assumes that population growth or reduction at the tract level mirrors what is happening at the county level. This is an improvement over linear or geometric interpolation between census years, but is still far from perfect. Census tracts can undergo rapid year-to-year population change, such as when new housing is constructed or, less frequently, demolished. An extreme example is census tract 1.04 in Westchester County, New York, which had a population of 0 in all 3 census years, as it was located entirely within an industrial area. Since 2010, multiple large high-rise condominiums have been constructed here, so that the population in 2018 is probably now in the thousands, though any estimation or projection method tied to the 2010 census will still count 0 people here. It is conceivable that address files from the United States Postal Service or other sources could be used to capture these kinds of changes; I am unaware of any attempts to do this.The file contains data for 4893 census tracts. It has been restricted to census tracts with nonzero populations in at least one of the census years. There are other census tracts consisting entirely of water, parkland, or non-residential areas as in the example above, which have been omitted.These data are used for the calculation of small-area cancer rates in New York State.

  15. a

    Catholic Carbon Footprint Summary Dashboard

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Summary Dashboard [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/items/456fa8d2472541529a006719bd8e3745
    Explore at:
    Dataset updated
    Oct 8, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  16. Diets, Recipes And Their Nutrients

    • kaggle.com
    Updated Oct 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Diets, Recipes And Their Nutrients [Dataset]. https://www.kaggle.com/datasets/thedevastator/healthy-diet-recipes-a-comprehensive-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 18, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Recipes And Nutrients Per Diet

    A dataset of diets and recipes

    About this dataset

    Do you want to nourish your body in the best and healthiest way possible? If so, then this dataset is for you! It consists of recipes from different diets and cuisines, all of which are aimed at providing healthy and nutritious meal options. The dataset includes information on the macronutrients of each recipe, as well as the extraction day and time. This makes it an incredibly valuable resource for those interested in following a healthy diet, as well as for researchers studying the relationship between diet and health. So what are you waiting for? Start exploring today!

    How to use the dataset

    This dataset can be used to find healthy and nutritious recipes from different diets and cuisines. The macronutrient information can be used to make sure that the recipes fit into a healthy diet plan. The extraction day and time can be used to find recipes that were extracted recently or to find recipes that have been extracted on a particular day

    Research Ideas

    • This dataset can be used to create a healthy meal plan for those interested in following a nutritious diet.
    • This dataset can be used to study the relationship between diet and health.
    • This dataset can be used to create healthy recipes that are suitable for different diets and cuisines

    Acknowledgements

    We would like to thank the following people for their contributions to this dataset:

    -The anonymous recipe creators who have shared their healthy and nutritious recipes with us -The researchers who have studied the relationship between diet and health, and have helped to inform our choices of recipes

    License

    See the dataset description for more information.

    Columns

    File: All_Diets.csv | Column name | Description | |:-------------------|:---------------------------------------------| | Diet_type | The type of diet the recipe is for. (String) | | Recipe_name | The name of the recipe. (String) | | Cuisine_type | The cuisine the recipe is from. (String) | | Protein(g) | The amount of protein in grams. (Float) | | Carbs(g) | The amount of carbs in grams. (Float) | | Fat(g) | The amount of fat in grams. (Float) | | Extraction_day | The day the recipe was extracted. (String) |

    File: dash.csv | Column name | Description | |:-------------------|:---------------------------------------------| | Diet_type | The type of diet the recipe is for. (String) | | Recipe_name | The name of the recipe. (String) | | Cuisine_type | The cuisine the recipe is from. (String) | | Protein(g) | The amount of protein in grams. (Float) | | Carbs(g) | The amount of carbs in grams. (Float) | | Fat(g) | The amount of fat in grams. (Float) | | Extraction_day | The day the recipe was extracted. (String) |

    File: keto.csv | Column name | Description | |:-------------------|:---------------------------------------------| | Diet_type | The type of diet the recipe is for. (String) | | Recipe_name | The name of the recipe. (String) | | Cuisine_type | The cuisine the recipe is from. (String) | | Protein(g) | The amount of protein in grams. (Float) | | Carbs(g) | The amount of carbs in grams. (Float) | | Fat(g) | The amount of fat in grams. (Float) | | Extraction_day | The day the recipe was extracted. (String) |

    File: mediterranean.csv | Column name | Description | |:-------------------|:---------------------------------------------| | Diet_type | The type of diet the recipe is for. (String) | | Recipe_name | The name of the recipe. (String) | | Cuisine_type | The cuisine the recipe is from. (String) | | Protein(g) | The amount of protein in grams. (Float) | | Carbs(g) | The amount of carbs in grams. (Float) | | Fat(g) | The amount of fat in grams. (Float) | | Extraction_day | The day the recipe was extracted. (String) |

    File: paleo.csv | Column name | Description | |:-------------------|:---------------------------------------------| | Diet_type | The type of diet the recipe is for. (String) | | Recipe_name | The name of the recipe. (String) | | Cuisine_type | The cuisine the recipe is from. (String) | | Protein(g) | The amount of protein in grams. (Float) | | Carbs(g) | The amount of carb...

  17. US Adult COVID-19 Impact Survey Data

    • kaggle.com
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Adult COVID-19 Impact Survey Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-adult-covid-19-impact-survey-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 10, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Adult COVID-19 Impact Survey Data

    Regional, Socio-Economic, and Health Effects

    By Meghan Hoyer [source]

    About this dataset

    The Associated Press is proud to present the COVID Impact Survey, a statistical survey providing data on how the coronavirus pandemic has affected people in the United States. Conducted by NORC at the University of Chicago with sponsorship from the Data Foundation and Federal Reserve Bank of Minneapolis, this probability-based survey offers valuable insight into three core areas related to physical health, economic and financial security, and social and mental health.

    Through this vital survey data, we can gain a better understanding of how individuals are dealing with symptoms related to COVID-19, their financial situation during this time period as well as changes in employment or government assistance policies, food security ization (in both nationwide & regional scope), communication with friends and family members, anxiety levels & if people are volunteering more during pandemic restrictions; furthermore gaining an overall comprehensive snapshot into what factors are impacting public perception regarding COVID-19’s effect on US citizens.

    Using these insights it's possible to track metrics over time - Observing which issues Americans face everyday but also long-term effects such as mental distress or self sacrificing volunteer activities that appear due to underlying stress factors. It’s imperative that we properly weight our analysis when using this data & never report raw numbers; instead we must apply queries using statistical software such R/SPSS - thus being able to find results nationally as well as within 10 states + metropolitan areas across America whilst utilising margin of error for detecting statistically significant differences between each researched segment!

    Let’s open our minds today – digging beneath surface level information so data tells us stories about humanity & our social behavior patterns during these uncertain times!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains survey data related to the impact of COVID-19 on US adult residents. The survey covers physical health, mental health, economic security, and social dynamics that have been affected by the pandemic. It is important to remember that this is survey data and must be properly weighted when analyzing it. Raw or aggregated numbers should not be used to generate insights. In order to weight the data appropriately, we recommend using statistical software such as R or SPSS or our provided queries (linked in this guide).

    To generate a table relating to a specific topic covered in the survey, use the survey questionnaire and code book to match a question (the variable label) with its corresponding variable name. For instance “How often have you felt lonely in the past 7 days?” is variable “soc5c”. After entering a variable name into one of our provided queries, a sentence summarizing national results can be written out such as “People in some states are less likely to report loneliness than others… nationally 60% of people said they hadn't felt lonely”

    When making comparisons for numerical statistics between different regions it is important to consider the margin of error associated with each set of surveys for national and regional figures provided within this document; it will help determine if differences between groups are statistically significant. If differences are: at least twice as large as margin of error then there is clear difference; at least as large as margin then there is slight/apparent difference; less than/equal margin no real difference can be determined

    Survey results are generally posted under embargo on Tuesday evenings with data release taking place at 1 pm ET Thursdays afterward under an appropriate title including month & year ie 01_April_30_covid_impact_survey). Data will come in comma-delimited & statistical formats containing necessary inferences regarding sample collection etc outlined within this guide

    When citing survey results these should always attributed with qualification— The Covid Impact Survey conducted by NORC at University Chicago for The Data Foundation sponsored by Federal Reserve Bank Minneapolis & Packard Foundation .
    Lastly more resources regarding AP’s data journalism& distributions capabilities can found via link here or contact kromanoap.org

    Research Ideas

    • Comparing mental health outcomes of the pandemic in different states and metropolitan areas, such as rates of anxiety or lonelines...
  18. e

    The Mood and Health Study, 2018-2019 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Apr 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). The Mood and Health Study, 2018-2019 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/ed49e476-23d0-5fb9-a515-de66fa657517
    Explore at:
    Dataset updated
    Apr 25, 2023
    Description

    This study fits into the field of behavioural medicine which tries to better understand the mind-body connection. That is, why does what we think and feel affect our bodies in ways which can cause us to become unwell? Quantitative research has repeatedly shown that depression is associated with the onset and progression of multiple different physical illnesses. However, we are still trying to understand why this is the case. We propose that the experience of depression in the physically ill may partly explain this, however this has yet to be addressed in previous research. Qualitative methods involve asking participants about their experiences of living with disease. In this study we propose to ask persons with 4 different diagnoses (depression only, depression comorbid with: coronary heart disease, arthritis or type 2 diabetes) in order to look for similarities and differences in individual experiences. We are particularly interested to know whether the symptoms of depression present themselves differently across the different physical illness groups and the timeline and course of depressive symptoms in relation to an individual’s physical illness symptoms. Such questions are possible to answer using quantitative methods using sophisticated statistical techniques, however such approaches strip away the context of the diagnosis which might help researchers to understand the finer details of this important issue. Three physical illness groups have been selected since they are all prevalent in the UK primary care setting and have all been associated with depression in cross-sectional and prospective analyses. These illness are: arthritis, coronary heart disease and type 2 diabetes. These three diseases have also been selected since they have all been shown to have involve inflammatory processes, which is one hypothesised mechanism linking depression to physical illness. Importantly each of the three diseases manifest themselves with different symptoms, physical limitations and treatment regimes, making cross-group comparisons possible. Using face-to-face interviews of up to 60 primary care patients we aim to better delineate the similarities and differences in the experience of depression between those patients with a psychiatric diagnosis but who are otherwise physically healthy in comparison to those with depression and a comorbid physical illness. This research will help us to better understand the experience of depression in physical illness, helping to inform studies on the early identification and treatment of depression in primary care.The purpose of this research is to understand more about biosocial pathways in health by studying depression symptoms and how they relate to physical illnesses such as diabetes, heart disease and cancer. We already know that people suffering from these diseases are more likely to experience symptoms of depression than those without them. We also know that people who experience depression symptoms are more likely to develop a physical illness later in life. However, as yet, we are not sure why depression symptoms and physical illnesses are related in these ways. I am particularly interested in the biological pathways linking depression symptoms and physical illnesses. These pathways include things like how our bodies respond to stress and how well our immune system works. For example, I am interested in a substance called cortisol which is released by the body when we feel stressed or sad. I am also interested in part of the immune system which is responsible for levels of inflammation. Research has shown that cortisol and inflammation do not work as well as they should in people who have depression symptoms or a physical illness. Therefore, I am interested in finding out whether changes in these things can explain the link between depression symptoms and physical illness morbidity in people who suffer from a variety of different physical illnesses. My research fits in well with the ESRC's priorities for this award: biosocial research and secondary analyses of longitudinal data. I am proposing to conduct biosocial research since I am planning to study the biology of a problem that society is facing. In addition, I intend to use longitudinal data that has already been collected, but has not yet been used to answer the questions I am interested in. I will use two main methods to analyse my data: quantitative analyses of existing data and qualitative analyses of a new study. I will use data from studies such as Whitehall II, the English Longitudinal Study of Ageing (ELSA), and Midlife in the United States study (MIDUS) among others. Using these datasets will allow me to partly answer my questions using statistical analyses. In addition, I will conduct a qualitative study in order to speak to individuals living with either a mental or physical illness about their experiences of depression symptoms. This will enable me to explore how people think, feel and cope with their illnesses and their mood. This research is important for a number of reasons. First of all, research has shown that people who have depression symptoms and a physical illness are likely to experience more symptoms of their physical illness than those without depression symptoms. In other words, they are more likely to feel sicker than those without depression symptoms. This links to the second important reason. If we understand why people with physical illness also get depression symptoms then we can improve our treatment of these individuals. At the moment, our current treatment options are not always very effective. So, not only do these people suffer more symptoms of their illness, their depression symptoms do not always go away with treatment. If we can improve treatment, then we can reduce suffering. Another reason that this research is important is the scale of the problem. Currently a lot of people with a physical illness also experience depression symptoms. Sadly, research has shown that a lot of these patients do not get identified by doctors as needing extra help. I plan to raise awareness of this issue during the course of my fellowship by ensuring I reach out to policymakers, health professionals and the public. Face to face qualitative interviews with primary care patients with depression.

  19. 2023 Census Māori descent population change by regional council

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census Māori descent population change by regional council [Dataset]. https://datafinder.stats.govt.nz/layer/117600-2023-census-maori-descent-population-change-by-regional-council/
    Explore at:
    shapefile, csv, geodatabase, pdf, dwg, mapinfo mif, kml, mapinfo tab, geopackage / sqliteAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains Māori descent indicator census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the Māori descent indicator counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.

    Māori descent indicator categories are:

    • Māori descent
    • No Māori descent
    • Don’t know.

    Map shows the percentage change in the Māori descent census usually resident population count between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service.

    ​

    Footnotes

    Te Whata

    Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.

    ​

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    ​

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    ​

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    ​

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    ​

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    ​

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    ​

    Māori descent concept quality rating

    Māori descent is rated as very high quality.

    Māori descent – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    ​

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    ​

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    ​

    Symbol

    -998 Not applicable

    ​

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

  20. r

    The multi-camera surveillance database: for the task of person...

    • researchdata.edu.au
    • researchdatafinder.qut.edu.au
    Updated 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bialkowski Alina; Fookes Clinton; Denman Simon; Sridharan Sridha (2014). The multi-camera surveillance database: for the task of person re-identification [Dataset]. http://doi.org/10.4225/09/586b33b1aa774
    Explore at:
    Dataset updated
    2014
    Dataset provided by
    Queensland University of Technology
    Authors
    Bialkowski Alina; Fookes Clinton; Denman Simon; Sridharan Sridha
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Dec 31, 2013
    Area covered
    Description

    This multi-camera surveillance dataset, the SAIVT-SoftBio database, was captured from an existing surveillance network, to enable the evaluation of person recognition and re-identification models in a reallife multi-camera surveillance environment.

    The dataset consists of 150 people moving through a building environment, recorded by eight surveillance cameras. Each camera captures data at 25 frames per second, at a resolution of 704 x 576 pixels, and is calibrated using Tsai’s method. The placement of cameras is a real-life surveillance setup, and cameras have been placed to provide maximal coverage of the space (with some overlap) and observation of the entrances to the building. The dataset was collected in an uncontrolled manner, so subjects can travel any route through the building. Thus, the vast majority of subjects will only pass through a subset of the camera network and that subset varies from person to person. This provides a highly unconstrained environment in which to test person re-identification models.

    The frames are recorded from when the subject enters the building through one of the three main doorways visible in Camera 4, Camera 7 and Camera 5/8, until they leave observation either through exiting the building or entering a lecture theatre. Any frames which are significantly occluded, have been omitted.

    XML files are used to store information about the database to enable different evaluations to be easily performed based on which subset of the dataset fits the desired criteria. For each subject, an XML file is used to summarise the camera views
    and frame information which can be used to select subjects which fit the desired evaluation conditions (e.g. only subjects that exist in specific cameras or locations can be selected).

    The overall dataset is also summarised in an XML file, which provides information on the camera calibration data for each subject.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NYC Open Data (2019). NYC Open Data [Dataset]. https://www.kaggle.com/datasets/nycopendata/new-york
Organization logo

NYC Open Data

NYC Open Data (BigQuery Dataset)

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Mar 20, 2019
Dataset authored and provided by
NYC Open Data
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/

Content

Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:

  • Over 8 million 311 service requests from 2012-2016

  • More than 1 million motor vehicle collisions 2012-present

  • Citi Bike stations and 30 million Citi Bike trips 2013-present

  • Over 1 billion Yellow and Green Taxi rides from 2009-present

  • Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015

This dataset is deprecated and not being updated.

Fork this kernel to get started with this dataset.

Acknowledgements

https://opendata.cityofnewyork.us/

https://cloud.google.com/blog/big-data/2017/01/new-york-city-public-datasets-now-available-on-google-bigquery

This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.

The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.

Banner Photo by @bicadmedia from Unplash.

Inspiration

On which New York City streets are you most likely to find a loud party?

Can you find the Virginia Pines in New York City?

Where was the only collision caused by an animal that injured a cyclist?

What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?

https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here"> https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png

Search
Clear search
Close search
Google apps
Main menu