30 datasets found
  1. Data from: SEC Filings

    • kaggle.com
    zip
    Updated Jun 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). SEC Filings [Dataset]. https://www.kaggle.com/datasets/bigquery/sec-filings
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Jun 5, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. For more information please see this site.

    To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience.

    DISCLAIMER: The Financial Statement and Notes Data Sets contain information derived from structured data filed with the Commission by individual registrants as well as Commission-generated filing identifiers. Because the data sets are derived from information provided by individual registrants, we cannot guarantee the accuracy of the data sets. In addition, it is possible inaccuracies or other errors were introduced into the data sets during the process of extracting the data and compiling the data sets. Finally, the data sets do not reflect all available information, including certain metadata associated with Commission filings. The data sets are intended to assist the public in analyzing data contained in Commission filings; however, they are not a substitute for such filings. Investors should review the full Commission filings before making any investment decision.

  2. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  3. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://healthdata.gov/dataset/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/4tut-jeki
    Explore at:
    xml, json, csv, tsv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  4. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. Financial Statement Data Sets

    • kaggle.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vadim Vanak (2025). Financial Statement Data Sets [Dataset]. https://www.kaggle.com/datasets/vadimvanak/company-facts-2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vadim Vanak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset offers a detailed collection of US-GAAP financial data extracted from the financial statements of exchange-listed U.S. companies, as submitted to the U.S. Securities and Exchange Commission (SEC) via the EDGAR database. Covering filings from January 2009 onwards, this dataset provides key financial figures reported by companies in accordance with U.S. Generally Accepted Accounting Principles (GAAP).

    Dataset Features:

    • Data Scope: The dataset is restricted to figures reported under US-GAAP standards, with the exception of EntityCommonStockSharesOutstanding and EntityPublicFloat.
    • Currency and Units: The dataset exclusively includes figures reported in USD or shares, ensuring uniformity and comparability. It excludes ratios and non-financial metrics to maintain focus on financial data.
    • Company Selection: The dataset is limited to companies with U.S. exchange tickers, providing a concentrated analysis of publicly traded firms within the United States.
    • Submission Types: The dataset only incorporates data from 10-Q, 10-K, 10-Q/A, and 10-K/A filings, ensuring consistency in the type of financial reports analyzed.

    Data Sources and Extraction:

    This dataset primarily relies on the SEC's Financial Statement Data Sets and EDGAR APIs: - SEC Financial Statement Data Sets - EDGAR Application Programming Interfaces

    In instances where specific figures were missing from these sources, data was directly extracted from the companies' financial statements to ensure completeness.

    Please note that the dataset presents financial figures exactly as reported by the companies, which may occasionally include errors. A common issue involves incorrect reporting of scaling factors in the XBRL format. XBRL supports two tag attributes related to scaling: 'decimals' and 'scale.' The 'decimals' attribute indicates the number of significant decimal places but does not affect the actual value of the figure, while the 'scale' attribute adjusts the value by a specific factor.

    However, there are several instances, numbering in the thousands, where companies have incorrectly used the 'decimals' attribute (e.g., 'decimals="-6"') under the mistaken assumption that it controls scaling. This is not correct, and as a result, some figures may be inaccurately scaled. This dataset does not attempt to detect or correct such errors; it aims to reflect the data precisely as reported by the companies. A future version of the dataset may be introduced to address and correct these issues.

    The source code for data extraction is available here

  6. Health Inequality Project

    • stanford.redivis.com
    • redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, stata, csv, avro, application/jsonl, spss, arrow, sasAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  7. N

    Section, AL Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Section, AL Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1fefc86-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Section
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Section by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Section. The dataset can be utilized to understand the population distribution of Section by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Section. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Section.

    Key observations

    Largest age group (population): Male # 45-49 years (72) | Female # 10-14 years (61). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Section population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Section is shown in the following column.
    • Population (Female): The female population in the Section is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Section for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Section Population by Gender. You can refer the same here

  8. D

    ARCHIVED: COVID-19 Cases by Population Characteristics Over Time

    • data.sfgov.org
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Sep 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Cases by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/Health-and-Social-Services/ARCHIVED-COVID-19-Cases-by-Population-Characterist/j7i3-u9ke
    Explore at:
    xml, csv, json, application/rdfxml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Sep 11, 2023
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.

    B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.  

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.

    Gender * The City collects information on gender identity using these guidelines.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.

    Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.

    Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.

    New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.

    This data may not be immediately available for recently reported cases. Data updates as more information becomes available.

    To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.

    E. CHANGE LOG

    • 9/11/2023 - data on COVID-19 cases by population characteristics over time are no longer being updated. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
    • 6/6/2023 - data on cases by transmission type have been removed. See section ARCHIVED DATA for more detail.
    • 5/16/2023 - data on cases by sexual orientation, comorbidities, homelessness, and single room occupancy have been removed. See section ARCHIVED DATA for more detail.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “population_estimate” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/5/2023 - data on SNF cases removed. See section ARCHIVED DATA for more detail.
    • 3/23/2022 - ‘Native American’ changed to ‘American Indian or Alaska Native’ to align with the census.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.

  9. d

    Road Traffic Injuries

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Road Traffic Injuries [Dataset]. https://catalog.data.gov/dataset/road-traffic-injuries-0935b
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  10. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    application/jsonl, parquet, spss, csv, arrow, stata, avro, sasAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  11. f

    Data from: Epidemiology, resource use, and treatment patterns of locally...

    • tandf.figshare.com
    docx
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florence Joly; Stephane Culine; Morgan Roupret; Aurore Tricotel; Emilie Casarotto; Sandrine Brice; Rafael Minacori; Marthe Vuillet; Marie-Catherine Thomas; Kirsten Leyland; Anil Upadhyay; Vicki Munro; Torsten Strunz-McKendry (2025). Epidemiology, resource use, and treatment patterns of locally advanced or metastatic urothelial carcinoma in France [Dataset]. http://doi.org/10.6084/m9.figshare.28450102.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Florence Joly; Stephane Culine; Morgan Roupret; Aurore Tricotel; Emilie Casarotto; Sandrine Brice; Rafael Minacori; Marthe Vuillet; Marie-Catherine Thomas; Kirsten Leyland; Anil Upadhyay; Vicki Munro; Torsten Strunz-McKendry
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    Describe real-world epidemiology, treatment patterns, health care resource utilization, and costs of locally advanced or metastatic urothelial carcinoma (la/mUC) in France. Retrospective study including all adults with la/mUC diagnosis during January 2017 to December 2020 in the PMSI database. Annual prevalence and incidence ranged from 36.4 to 38.9 and 16.4 to 18.5 cases per 100,000 people, respectively. Of the 25,314 patients with incident la/mUC, 37.6% did not receive first-line systemic treatment. Of the 14,656 patients who started first-line systemic treatment, 66.6%, 22.5%, and 10.9% received 1, 2, and 3 lines of therapy, respectively. Annual per-patient costs in second-/third-line setting ranged from €8803 to €16,012. The substantial disease burden of la/mUC in France highlights the unmet need for new therapies. What is this article about? Urothelial carcinoma (UC) is a type of cancer affecting the urinary system. It can spread to other parts of the body, described as locally advanced or metastatic (la/m). We used information from a French database recording hospitalizations in France to find out how many people have la/mUC, how many new cases develop each year, what treatments they receive, how many die in the hospital, and how much their care costs. What were the results? Based on database information, 37 to 39 of every 100,000 people have la/mUC and 17 to 19 of every 100,000 people are identified with a new case yearly. Slightly more than one-third of patients with la/mUC did not receive recommended treatment (chemotherapy) when first diagnosed. Chemotherapy was the most common treatment type for the first, second, or third treatment; checkpoint inhibitors (a unique treatment) became more commonly used as a second treatment over time. Yearly in-hospital death rates were high, ranging from 47.8% of patients who died within 1 year from diagnosis to 62.9% dying within 3 years. Yearly cost of care was high (costing €8803 to €16,012) in patients starting a second or third treatment. What do the results of the study mean? The study shows many patients may not be fit enough or choose not to receive treatment. Even those receiving treatment are at high risk for poor outcomes. The burden of la/mUC in France is high, underscoring the need for more therapies and better supportive care early in disease management.

  12. w

    Dataset of artists who created Dam–Research Center Project (Plan and...

    • workwithdata.com
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of artists who created Dam–Research Center Project (Plan and section) [Dataset]. https://www.workwithdata.com/datasets/artists?f=1&fcol0=j0-artwork&fop0=%3D&fval0=Dam%E2%80%93Research+Center+Project+(Plan+and+section)&j=1&j0=artworks
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about artists. It has 1 row and is filtered where the artworks is Dam–Research Center Project (Plan and section). It features 9 columns including birth date, death date, country, and gender.

  13. w

    Dataset of artists who created Glass I section - "MoMA 4"

    • workwithdata.com
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of artists who created Glass I section - "MoMA 4" [Dataset]. https://www.workwithdata.com/datasets/artists?f=1&fcol0=j0-artwork&fop0=%3D&fval0=Glass+I+section+-+%22MoMA+4%22&j=1&j0=artworks
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about artists. It has 1 row and is filtered where the artworks is Glass I section - "MoMA 4". It features 9 columns including birth date, death date, country, and gender.

  14. A

    ‘Death documents issued in the second half of 2020 ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Death documents issued in the second half of 2020 ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-europa-eu-death-documents-issued-in-the-second-half-of-2020-6dd4/latest
    Explore at:
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Death documents issued in the second half of 2020 ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/a8fc5238-4898-4798-b8ed-95b29498e482 on 12 January 2022.

    --- Dataset description provided by original source is as follows ---

    Acte-de-death — liberated in sem. II 2020

    --- Original source retains full ownership of the source dataset ---

  15. A

    ‘Death records recorded in civil status registers in the second half of 2019...

    • analyst-2.ai
    Updated Jan 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Death records recorded in civil status registers in the second half of 2019 ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-europa-eu-death-records-recorded-in-civil-status-registers-in-the-second-half-of-2019-0fb6/1cc7bcfc/?iid=001-896&v=presentation
    Explore at:
    Dataset updated
    Jan 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Death records recorded in civil status registers in the second half of 2019 ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/53cfb9d6-c8eb-48ef-99f9-990d8acc9827 on 13 January 2022.

    --- Dataset description provided by original source is as follows ---

    death records recorded in the second half of 2019

    --- Original source retains full ownership of the source dataset ---

  16. Asylum and resettlement - Historic datasets

    • gov.uk
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2023). Asylum and resettlement - Historic datasets [Dataset]. https://www.gov.uk/government/statistical-data-sets/asylum-and-resettlement-datasets
    Explore at:
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    This page contains data for the immigration system statistics up to March 2023.

    For current immigration system data, visit ‘Immigration system statistics data tables’.

    Asylum applications, decisions and resettlement

    https://assets.publishing.service.gov.uk/media/64625e6894f6df0010f5eaab/asylum-applications-datasets-mar-2023.xlsx">Asylum applications, initial decisions and resettlement (MS Excel Spreadsheet, 9.13 MB)
    Asy_D01: Asylum applications raised, by nationality, age, sex, UASC, applicant type, and location of application
    Asy_D02: Outcomes of asylum applications at initial decision, and refugees resettled in the UK, by nationality, age, sex, applicant type, and UASC
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/64625ec394f6df0010f5eaac/asylum-applications-awaiting-decision-datasets-mar-2023.xlsx">Asylum applications awaiting a decision (MS Excel Spreadsheet, 1.26 MB)
    Asy_D03: Asylum applications awaiting an initial decision or further review, by nationality and applicant type
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/62fa17698fa8f50b54374371/outcome-analysis-asylum-applications-datasets-jun-2022.xlsx">Outcome analysis of asylum applications (MS Excel Spreadsheet, 410 KB)
    Asy_D04: The initial decision and final outcome of all asylum applications raised in a period, by nationality
    This is not the latest data

    Age disputes

    https://assets.publishing.service.gov.uk/media/64625ef1427e41000cb437cb/age-disputes-datasets-mar-2023.xlsx">Age disputes (MS Excel Spreadsheet, 178 KB)
    Asy_D05: Age disputes raised and outcomes of age disputes
    This is not the latest data

    Asylum appeals

    https://assets.publishing.service.gov.uk/media/64625f0ca09dfc000c3c17cf/asylum-appeals-lodged-datasets-mar-2023.xlsx">Asylum appeals lodged and determined (MS Excel Spreadsheet, 817 KB)
    Asy_D06: Asylum appeals raised at the First-Tier Tribunal, by nationality and sex
    Asy_D07: Outcomes of asylum appeals raised at the First-Tier Tribunal, by nationality and sex
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/64625f29427e41000cb437cd/asylum-claims-certified-section-94-datasets-mar-2023.xlsx"> Asylum claims certified under Section 94 (MS Excel Spreadsheet, 150 KB)
    Asy_D08: Initial decisions on asylum applications certified under Section 94, by nationality
    This is not the latest data

    Asylum support

    https://assets.publishing.service.gov.uk/media/6463a618d3231e000c32da99/asylum-seekers-receipt-support-datasets-mar-2023.xlsx">Asylum seekers in receipt of support (MS Excel Spreadsheet, 2.16 MB)
    Asy_D09: Asylum seekers in receipt of support at end of period, by nationality, support type, accommodation type, and UK region
    This is not the latest data

    https://assets.publishing.service.gov.uk/media/63ecd7388fa8f5612a396c40/applications-section-95-support-datasets-dec-2022.xlsx">Applications for section 95 su

  17. w

    Dataset of artists who created Davidson Wayside Markets Project (Elevation...

    • workwithdata.com
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of artists who created Davidson Wayside Markets Project (Elevation and section) [Dataset]. https://www.workwithdata.com/datasets/artists?f=1&fcol0=j0-artwork&fop0=%3D&fval0=Davidson+Wayside+Markets+Project+(Elevation+and+section)&j=1&j0=artworks
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about artists. It has 1 row and is filtered where the artworks is Davidson Wayside Markets Project (Elevation and section). It features 9 columns including birth date, death date, country, and gender.

  18. Synthetic datasets of the UK Biobank cohort

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, pdf, zip
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Gasparrini; Antonio Gasparrini; Jacopo Vanoli; Jacopo Vanoli (2025). Synthetic datasets of the UK Biobank cohort [Dataset]. http://doi.org/10.5281/zenodo.13983170
    Explore at:
    bin, csv, zip, pdfAvailable download formats
    Dataset updated
    Feb 6, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Antonio Gasparrini; Antonio Gasparrini; Jacopo Vanoli; Jacopo Vanoli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository stores synthetic datasets derived from the database of the UK Biobank (UKB) cohort.

    The datasets were generated for illustrative purposes, in particular for reproducing specific analyses on the health risks associated with long-term exposure to air pollution using the UKB cohort. The code used to create the synthetic datasets is available and documented in a related GitHub repo, with details provided in the section below. These datasets can be freely used for code testing and for illustrating other examples of analyses on the UKB cohort.

    Note: while the synthetic versions of the datasets resemble the real ones in several aspects, the users should be aware that these data are fake and must not be used for testing and making inferences on specific research hypotheses. Even more importantly, these data cannot be considered a reliable description of the original UKB data, and they must not be presented as such.

    The original datasets are described in the article by Vanoli et al in Epidemiology (2024) (DOI: 10.1097/EDE.0000000000001796) [freely available here], which also provides information about the data sources.

    The work was supported by the Medical Research Council-UK (Grant ID: MR/Y003330/1).

    Content

    The series of synthetic datasets (stored in two versions with csv and RDS formats) are the following:

    • synthbdcohortinfo: basic cohort information regarding the follow-up period and birth/death dates for 502,360 participants.
    • synthbdbasevar: baseline variables, mostly collected at recruitment.
    • synthpmdata: annual average exposure to PM2.5 for each participant reconstructed using their residential history.
    • synthoutdeath: death records that occurred during the follow-up with date and ICD-10 code.

    In addition, this repository provides these additional files:

    • codebook: a pdf file with a codebook for the variables of the various datasets, including references to the fields of the original UKB database.
    • asscentre: a csv file with information on the assessment centres used for recruitment of the UKB participants, including code, names, and location (as northing/easting coordinates of the British National Grid).
    • Countries_December_2022_GB_BUC: a zip file including the shapefile defining the boundaries of the countries in Great Britain (England, Wales, and Scotland), used for mapping purposes [source].

    Generation of the synthetic data

    The datasets resemble the real data used in the analysis, and they were generated using the R package synthpop (www.synthpop.org.uk). The generation process involves two steps, namely the synthesis of the main data (cohort info, baseline variables, annual PM2.5 exposure) and then the sampling of death events. The R scripts for performing the data synthesis are provided in the GitHub repo (subfolder Rcode/synthcode).

    The first part merges all the data including the annual PM2.5 levels in a single wide-format dataset (with a row for each subject), generates a synthetic version, adds fake IDs, and then extracts (and reshapes) the single datasets. In the second part, a Cox proportional hazard model is fitted on the original data to estimate risks associated with various predictors (including the main exposure represented by PM2.5), and then these relationships are used to simulate death events in each year. Details on the modelling aspects are provided in the article.

    This process guarantees that the synthetic data do not hold specific information about the original records, thus preserving confidentiality. At the same time, the multivariate distribution and correlation across variables as well as the mortality risks resemble those of the original data, so the results of descriptive and inferential analyses are similar to those in the original assessments. However, as noted above, the data are used only for illustrative purposes, and they must not be used to test other research hypotheses.

  19. FiveThirtyEight Avengers Dataset

    • kaggle.com
    zip
    Updated Jan 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Avengers Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-avengers-dataset
    Explore at:
    zip(9232 bytes)Available download formats
    Dataset updated
    Jan 7, 2019
    Dataset authored and provided by
    FiveThirtyEighthttps://abcnews.go.com/538
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Avengers

    This folder contains the data behind the story Joining The Avengers Is As Deadly As Jumping Off A Four-Story Building.

    avengers.csv details the deaths of Marvel comic book characters between the time they joined the Avengers and April 30, 2015, the week before Secret Wars #1.

    HeaderDefinition
    URLThe URL of the comic character on the Marvel Wikia
    Name/AliasThe full name or alias of the character
    AppearancesThe number of comic books that character appeared in as of April 30
    Current?Is the member currently active on an avengers affiliated team?
    GenderThe recorded gender of the character
    ProbationarySometimes the character was given probationary status as an Avenger, this is the date that happened
    Full/ReserveThe month and year the character was introduced as a full or reserve member of the Avengers
    YearThe year the character was introduced as a full or reserve member of the Avengers
    Years since joining2015 minus the year
    HonoraryThe status of the avenger, if they were given "Honorary" Avenger status, if they are simply in the "Academy," or "Full" otherwise
    Death1Yes if the Avenger died, No if not.
    Return1Yes if the Avenger returned from their first death, No if they did not, blank if not applicable
    Death2Yes if the Avenger died a second time after their revival, No if they did not, blank if not applicable
    Return2Yes if the Avenger returned from their second death, No if they did not, blank if not applicable
    Death3Yes if the Avenger died a third time after their second revival, No if they did not, blank if not applicable
    Return3Yes if the Avenger returned from their third death, No if they did not, blank if not applicable
    Death4Yes if the Avenger died a fourth time after their third revival, No if they did not, blank if not applicable
    Return4Yes if the Avenger returned from their fourth death, No if they did not, blank if not applicable
    Death5Yes if the Avenger died a fifth time after their fourth revival, No if they did not, blank if not applicable
    Return5Yes if the Avenger returned from their fifth death, No if they did not, blank if not applicable
    NotesDescriptions of deaths and resurrections.

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

    Cover photo by Clem Onojeghuo on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

  20. N

    Chevy Chase Section Five, MD Population Breakdown by Gender and Age Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Chevy Chase Section Five, MD Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1d797cd-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maryland, Chevy Chase Section Five
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Chevy Chase Section Five by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Chevy Chase Section Five. The dataset can be utilized to understand the population distribution of Chevy Chase Section Five by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Chevy Chase Section Five. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Chevy Chase Section Five.

    Key observations

    Largest age group (population): Male # 55-59 years (48) | Female # 55-59 years (46). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Chevy Chase Section Five population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Chevy Chase Section Five is shown in the following column.
    • Population (Female): The female population in the Chevy Chase Section Five is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Chevy Chase Section Five for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Chevy Chase Section Five Population by Gender. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Google BigQuery (2020). SEC Filings [Dataset]. https://www.kaggle.com/datasets/bigquery/sec-filings
Organization logo

Data from: SEC Filings

BigQuery dataset of all SEC filings

Related Article
Explore at:
zip(0 bytes)Available download formats
Dataset updated
Jun 5, 2020
Dataset provided by
BigQueryhttps://cloud.google.com/bigquery
Authors
Google BigQuery
Description

In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. For more information please see this site.

To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience.

DISCLAIMER: The Financial Statement and Notes Data Sets contain information derived from structured data filed with the Commission by individual registrants as well as Commission-generated filing identifiers. Because the data sets are derived from information provided by individual registrants, we cannot guarantee the accuracy of the data sets. In addition, it is possible inaccuracies or other errors were introduced into the data sets during the process of extracting the data and compiling the data sets. Finally, the data sets do not reflect all available information, including certain metadata associated with Commission filings. The data sets are intended to assist the public in analyzing data contained in Commission filings; however, they are not a substitute for such filings. Investors should review the full Commission filings before making any investment decision.

Search
Clear search
Close search
Google apps
Main menu