100+ datasets found
  1. County Cancer Death Rates

    • kaggle.com
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    County Cancer Death Rates

    County-level cancer death rates with related variables

    By Noah Rippner [source]

    About this dataset

    This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

    Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

    The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

    To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

    Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

    It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

    Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

    Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

    How to use the dataset

    • Familiarize Yourself with the Columns:

      • County: The name of the county.
      • FIPS: The Federal Information Processing Standards code for the county.
      • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
      • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
      • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
      • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
      • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
      • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
    • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

    • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

    • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

    • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

    • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

  2. CDC WONDER: Cancer Statistics

    • healthdata.gov
    • data.virginia.gov
    • +5more
    application/rdfxml +5
    Updated Feb 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). CDC WONDER: Cancer Statistics [Dataset]. https://healthdata.gov/dataset/CDC-WONDER-Cancer-Statistics/mv5s-m59f
    Explore at:
    xml, tsv, application/rssxml, csv, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Feb 13, 2021
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  3. Cancer Mortality & Incidence Rates: (Country LVL)

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer Mortality & Incidence Rates: (Country LVL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-level-cancer-mortality-and-incidence-r/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Cancer Mortality & Incidence Rates: (Country LVL)

    Investigating Cancer Trends over time

    By Data Exercises [source]

    About this dataset

    This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.

    This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.

    When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied

    Research Ideas

    • Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
    • This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
    • This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...

  4. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/af56eb24/?iid=000-919&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  5. Deaths from All Cancers - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated May 9, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.io (2017). Deaths from All Cancers - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/deaths-from-all-cancers
    Explore at:
    Dataset updated
    May 9, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages. Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), indicator ID 40501, E05a. This data is updated annually.

  6. o

    Most Fatal Cancers in South Africa - Dataset - openAFRICA

    • open.africa
    Updated Oct 22, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Most Fatal Cancers in South Africa - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/most-fatal-cancers-in-south-africa
    Explore at:
    Dataset updated
    Oct 22, 2015
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    Two datasets that explore causes of death due to cancer in South Africa, drawing on data from the Revised Burden of Disease estimates for the Comparative Risk Factor Assessment for South Africa, 2000. The number and percentage of deaths due to cancer by cause are ranked for persons, males and females in the tables below. Lung cancer is the leading cause of cancer in SA accounting for 17% of all cancer deaths. This is followed by oesophagus Ca which accounts for 13%, cervix cancer accounting for 8%, breast cancer accounting for 8% and liver cancer which accounts for 6% of all cancers. Many more males suffer from lung and oesophagus cancer than females.

  7. g

    Emergency Visits among End-of-Life Cancer Patients in Taiwan: A...

    • gimi9.com
    Updated May 9, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Emergency Visits among End-of-Life Cancer Patients in Taiwan: A population-based study 台灣地區癌末病患之急診醫療利用與其相關因素 | gimi9.com [Dataset]. https://gimi9.com/dataset/taipei_00017719
    Explore at:
    Dataset updated
    May 9, 2015
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Taiwan, Taiwan Area
    Description

    "BACKGROUND: An increased number of emergency visits at the end of life may indicate poor-quality cancer care. The study aimed to investigate the prevalence and utilization of emergency visits and to explore the reasons for emergency department (ED) visits among cancer patients at the end of life. METHODS: A retrospective cohort study was performed by tracking one year of ambulatory medical service records before death. Data were collected from the cancer dataset of Taiwan's National Health Insurance Research Database (NHIRD). RESULTS: A total of 32,772 (19.2%) patients with malignant cancer visited EDs, and 23,883 patients died during the study period. Of these, the prevalence of emergency visits in the mortality group was 81.5%, and their ED utilization was significantly increased monthly to the end of life. The most frequent types of cancer were digestive and peritoneum cancers (34.8%), followed by breast cancer (17.7%) and head and neck cancers (13.3%). Older patients, males, and those diagnosed with metastases, respiratory or digestive cancer were more likely to use ED services at the end of life. Use of an ED service in the nearest community hospital to replace medical centers for dying cancer patients would be more acceptable in emergency situations. CONCLUSIONS: Our study provided population-based evidence related to ED utilization. An understanding of the reasons for such visits could be useful in preventing overuse of ED visits to improve the quality of end-of-life care."

  8. Breast Cancer Death Rate (per 100,000 females), New Jersey, by year:...

    • healthdata.nj.gov
    application/rdfxml +5
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health (2020). Breast Cancer Death Rate (per 100,000 females), New Jersey, by year: Beginning 2010 [Dataset]. https://healthdata.nj.gov/dataset/Breast-Cancer-Death-Rate-per-100-000-females-New-J/u6nf-k4bd
    Explore at:
    application/rdfxml, json, application/rssxml, tsv, csv, xmlAvailable download formats
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    New Jersey Department of Healthhttps://www.nj.gov/health/
    Authors
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
    Area covered
    New Jersey
    Description

    Rate: Number of deaths among females due to breast cancer per 100,000 female population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) of the female breast as the underlying cause (ICD-10 codes: C33-C34).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

  9. Cancer death rate (per 100,000), New Jersey, by year: Beginning 2010

    • healthdata.nj.gov
    • data.wu.ac.at
    application/rdfxml +5
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health (2020). Cancer death rate (per 100,000), New Jersey, by year: Beginning 2010 [Dataset]. https://healthdata.nj.gov/dataset/Cancer-death-rate-per-100-000-New-Jersey-by-year-B/sc3j-a37s
    Explore at:
    csv, application/rdfxml, json, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    New Jersey Department of Healthhttps://www.nj.gov/health/
    Authors
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
    Area covered
    New Jersey
    Description

    Rate: Number of deaths due to all kinds of Cancer per 100,000 Population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) as the underlying cause (ICD-10 codes: C00-C97).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

  10. p

    Cervical Cancer Risk Classification - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Cervical Cancer Risk Classification - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/cervical-cancer-risk-classification
    Explore at:
    Dataset updated
    Oct 7, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.

  11. w

    Lung Cancer Death Rate (per 100,000), New Jersey, by year: Beginning 2010

    • data.wu.ac.at
    • healthdata.nj.gov
    application/excel +5
    Updated May 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loretta Kelly (2018). Lung Cancer Death Rate (per 100,000), New Jersey, by year: Beginning 2010 [Dataset]. https://data.wu.ac.at/odso/healthdata_nj_gov/aWE3Ny1jdHFy
    Explore at:
    xlsx, csv, xml, application/xml+rdf, application/excel, jsonAvailable download formats
    Dataset updated
    May 23, 2018
    Dataset provided by
    Loretta Kelly
    Area covered
    New Jersey
    Description

    Rate: Number of deaths due to cancer of the trachea, bronchus, and lung per 100,000 Population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) cancer of the trachea, bronchus, and lung as the underlying cause (ICD-10 codes: C33-C34).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

  12. b

    Mortality rate from oral cancer, all ages - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mortality rate from oral cancer, all ages - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/mortality-rate-from-oral-cancer-all-ages-wmca/
    Explore at:
    csv, geojson, json, excelAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)

  13. AH Provisional Cancer Death Counts by Month and Year, 2020-2021

    • healthdata.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Jun 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2021). AH Provisional Cancer Death Counts by Month and Year, 2020-2021 [Dataset]. https://healthdata.gov/dataset/AH-Provisional-Cancer-Death-Counts-by-Month-and-Ye/tmib-pdcy
    Explore at:
    application/rssxml, csv, json, xml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Jun 23, 2021
    Dataset provided by
    data.cdc.gov
    Description

    Provisional death counts of malignant neoplasms (cancer) by month and year, and other selected demographics, for 2020-2021. Data are based on death certificates for U.S. residents.

  14. d

    Mortality Rates

    • catalog.data.gov
    • data.amerigeoss.org
    • +3more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Mortality Rates [Dataset]. https://catalog.data.gov/dataset/mortality-rates-6fb72
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Mortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.

  15. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female [Dataset]. https://www.ceicdata.com/en/india/health-statistics/in-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-female
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    India
    Description

    India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  16. G

    Cancer mortality trends, by sex and cancer type

    • open.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Oct 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Cancer mortality trends, by sex and cancer type [Dataset]. https://open.canada.ca/data/dataset/f956a772-392a-499f-b261-4191111023b8
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Oct 4, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.

  17. a

    AIHW - Cancer Mortality (PHN) 2011-2015 - Dataset - AURIN

    • data.aurin.org.au
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). AIHW - Cancer Mortality (PHN) 2011-2015 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/au-govt-aihw-phn-cancer-mortality-2011-2015-phn2015
    Explore at:
    Dataset updated
    Mar 6, 2025
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset presents the footprint of cancer mortality data in Australia for all cancers combined, and six selected cancers (female breast cancer, colorectal cancer, cervical cancer, lung cancer, melanoma of the skin, and prostate cancer) with their respective ICD-10 codes. The data spans the years 2011 to 2015 and is aggregated to 2015 PHN boundaries based on the 2011 Australian Statistical Geography Standard (ASGS). The source of the mortality data is the Australia Cancer Database, the National Mortality Database and the National Death Index. Cause of Death Unit Record File data are provided to the AIHW by the Registries of Births, Deaths and Marriages and the National Coronial Information System (managed by the Victorian Department of Justice) and include cause of death coded by the Australian Bureau of Statistics (ABS). The data are maintained by AIHW in the National Mortality Database. For more information, please visit the data source: AIHW - Cancer incidence and mortality in Australia by small geographic areas. Please note: AURIN has spatially enabled the original data using the Department of Health - PHN Areas. Colorectal deaths presented are underestimates. For further information on complexities in the measurement of bowel cancer in Australia, refer to the Australian Bureau of Statistics.

  18. Health and Lifestyle Survey Deaths and Cancer Data, June 2009

    • beta.ukdataservice.ac.uk
    Updated 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    B. D. Cox (2009). Health and Lifestyle Survey Deaths and Cancer Data, June 2009 [Dataset]. http://doi.org/10.5255/ukda-sn-6339-1
    Explore at:
    Dataset updated
    2009
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    B. D. Cox
    Description

    Following a number of feasibility studies and pilot surveys carried out in 1978, the first Health and Lifestyle Survey (HALS1) (held at the UKDA under SN 2218), funded by the Health Promotion Research Trust, was carried out in 1984-1985 on a random sample of the population of England, Scotland and Wales. A follow-up survey, HALS2, was conducted in 1991-1992. Ethical approval for the initial pilot studies was obtained locally, and ethical approval for the main HALS surveys was received from the BMA Ethical Committee before the launch of each survey.

    The first survey, HALS1, was designed as a unique attempt to describe the self-reported health, attitudes to health and beliefs about causes of disease in relation to measurements of health (e.g. blood pressure and lung function) and lifestyle in adults of all ages and circumstances living in their own homes in all parts of Great Britain. It also examined the distribution of, and the relationship between, physical and mental health, health-related behaviour (diet, exercise, smoking and alcohol consumption) and social circumstances. Following completion of HALS1, the respondents were 'flagged' with the Office for National Statistics (ONS) National Health Service register at Southport,so that notification of deaths and copies of death certificates of respondents were provided to the HALS1 team. (Note that at the time of HALS1 and 2, ONS was known as the Office of Population Censuses and Surveys (OPCS).)

    At the time of HALS1, a repeat survey was not foreseen, so no attempt was made to retain contact with the respondents to HALS1. However, when funding again became available from the Health Promotion Research Trust, as many of the respondents to HALS1 were traced as possible, and re-surveyed for HALS2 (held under SN 3279), which was conducted in 1991-1992. The principal aims of HALS2 were to examine the changes over seven years in the health and circumstances of the surviving respondents of HALS1.

    A further HALS dataset is held under SN 6339, which includes deaths and causes of death, and registrations of cancer morbidity and mortality for HALS respondents, currently up to June 2009. HALS Deaths and Cancer Data:
    This file lists the original 9,003 respondents to HALS (1984-1985) and flags those found on the NHS Central Register at ONS Southport. This allows analysis of final outcome - death - to be correlated against previously reported medical history, physiological status and lifestyle behaviour. In addition, registrations for cancer morbidity and mortality for HALS respondents, taken from the various regional Cancer Registries' returns to ONS, are also included. Up to the beginning of July 2009, notification of some 2,883 deaths has been received, and 1,468 respondents have been coded for cancer. Further details may be found in the documentation.

    This dataset comprises the 7th Listing (6th Update) of Deaths data, and the 4th Listing (3rd Update) of the Cancer data. Prior Listings/Updates of the Deaths and Cancer data were previously held under two separate studies, SN 3491, Health and Lifestyle Survey Deaths Data, and SN 4540, Health and Lifestyle Survey Cancer Data. As the Deaths and Cancer data are now included in one file, SNs 3491 and 4540 were combined into SN 6339 at the time the June 2009 updates were deposited, in November 2009.

  19. Cancer Statistics in US States

    • kaggle.com
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ms. Nancy Al Aswad (2022). Cancer Statistics in US States [Dataset]. https://www.kaggle.com/datasets/nancyalaswad90/cancer-statistics-in-us-states
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 17, 2022
    Dataset provided by
    Kaggle
    Authors
    Ms. Nancy Al Aswad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    What are Cancer Statistics in US States?

    The circled group of good survivors has genetic indicators of poor survivors (i.e. low ESR1 levels, which is typically the prognostic indicator of poor outcomes in breast cancer) – understanding this group could be critical for helping improve mortality rates for this disease. Why this group survived was quickly analysed by using the Outcome Column (here Event Death - which is binary - 0,1) as a Data Lens (which we term Supervised vs Unsupervised analyses).

    How to use this dataset

    • A network was built using only gene expression with 272 breast cancer patients (as rows), and 1570 columns.

    • Metadata includes patient info, treatment, and survival.

    • Each node is a group of patients similar to each other. Flares (left) represent sub-populations that are distinct from the larger population. (One differentiating factor between the two flares is estrogen expression (low = top flare, high = bottom flare)).

    • A bottom flare is a group of patients with 100% survival. The top flare shows a range of survival – very poor towards the tip (red), and very good near the base (circled).

    Acknowledgments

    When we use this dataset in our research, we credit the authors as :

    The main idea for uploading this dataset is to practice data analysis with my students, as I am working in college and want my student to train our studying ideas in a big dataset, It may be not up to date and I mention the collecting years, but it is a good resource of data to practice

  20. Oropharyngeal Cancer Death Rate (per 100,000), New Jersey, by year:...

    • healthdata.nj.gov
    • data.wu.ac.at
    application/rdfxml +5
    Updated Dec 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health (2020). Oropharyngeal Cancer Death Rate (per 100,000), New Jersey, by year: Beginning 2009-2011 [Dataset]. https://healthdata.nj.gov/dataset/Oropharyngeal-Cancer-Death-Rate-per-100-000-New-Je/gqu3-yyhs
    Explore at:
    json, xml, csv, tsv, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Dec 9, 2020
    Dataset provided by
    New Jersey Department of Healthhttps://www.nj.gov/health/
    Authors
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
    Area covered
    New Jersey
    Description

    Rate: Number of deaths due to oropharyngeal cancer per 100,000 Population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) of the lip, oral cavity and pharynx as the underlying cause of death (ICD-10 codes: C00-C14).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates
Organization logo

County Cancer Death Rates

County-level cancer death rates with related variables

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 3, 2023
Dataset provided by
Kaggle
Authors
The Devastator
Description

County Cancer Death Rates

County-level cancer death rates with related variables

By Noah Rippner [source]

About this dataset

This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

How to use the dataset

  • Familiarize Yourself with the Columns:

    • County: The name of the county.
    • FIPS: The Federal Information Processing Standards code for the county.
    • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
    • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
    • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
    • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
    • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
    • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
  • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

  • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

  • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

  • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

  • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

Search
Clear search
Close search
Google apps
Main menu