86 datasets found
  1. Number of road accidents per one million inhabitants in the United States...

    • statista.com
    Updated Dec 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Number of road accidents per one million inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3708/road-accidents-in-the-us/
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.

  2. Road safety statistics: data tables

    • gov.uk
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2024). Road safety statistics: data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Transport
    Description

    These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.

    Latest data and table index

    The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.

    A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).

    All collision, casualty and vehicle tables

    https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)

    Historic trends (RAS01)

    RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)

    RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)

    Road user type (RAS02)

    RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)

    RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)

    RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)

    Road type (RAS03)

    RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)

    RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa

  3. Road traffic fatalities per one million inhabitants in the United States...

    • statista.com
    Updated Dec 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Road traffic fatalities per one million inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3708/road-accidents-in-the-us/
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.

  4. d

    Motor Vehicle Collisions - Crashes

    • catalog.data.gov
    • nycopendata.socrata.com
    • +1more
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Motor Vehicle Collisions - Crashes [Dataset]. https://catalog.data.gov/dataset/motor-vehicle-collisions-crashes
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly). Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.

  5. Number of deaths due to road accidents in India 2005-2022

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of deaths due to road accidents in India 2005-2022 [Dataset]. https://www.statista.com/statistics/746887/india-number-of-fatalities-in-road-accidents/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Road accidents have been a major cause for concern across the Indian subcontinent. In 2022 alone, the country reported nearly *** thousand fatalities due to road accidents. Each year, about ***** to **** percent of the country’s GDP was invested in road accidents. Notably, while India has about *** percent of the world’s vehicle population, it also accounted for about *** percent of the global road traffic incidents. Almost ** percent of the accidents involved young Indians. Cases and causesTwo-wheelers had the maximum involvement in fatal road accidents across the country in 2018. A major portion of the accidents that year occurred at T-junctions. Over speeding has been a cause for concern throughout the country regardless of day or nighttime. Moreover, fast and risky maneuvers and illegal street races on roads and highways not designed for the purpose created significant trouble for the police. Over ** percent of the accidents occurred on straight roads. Additionally, state highways had a share of about ** percent of the total road accidents in 2018. Future scenarioRoughly around 17 accident-related deaths occur across India every hour. Fewer cops and empty roads at night, and sometimes even during the day seem to enable motorists to do away with the traffic rules. However, efforts were made to reduce these discrepancies. The police had equipped themselves with night vision speed guns to identify the culprits. Over speeding fine was increased in the amendment of the Motor Vehicles Act as well. The road network has played a crucial role in India’s economic development and the government is likely to continue to invest resources in making road safety a vital component of everyday commute.

  6. New Zealand NZ: Road Fatalities: Per One Million Inhabitants

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). New Zealand NZ: Road Fatalities: Per One Million Inhabitants [Dataset]. https://www.ceicdata.com/en/new-zealand/road-traffic-and-road-accident-fatalities-oecd-member-annual/nz-road-fatalities-per-one-million-inhabitants
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    New Zealand
    Description

    New Zealand NZ: Road Fatalities: Per One Million Inhabitants data was reported at 6.529 Ratio in 2023. This records a decrease from the previous number of 7.270 Ratio for 2022. New Zealand NZ: Road Fatalities: Per One Million Inhabitants data is updated yearly, averaging 8.772 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 16.022 Ratio in 1994 and a record low of 5.696 Ratio in 2013. New Zealand NZ: Road Fatalities: Per One Million Inhabitants data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s New Zealand – Table NZ.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made.

  7. Number of fatalities in traffic accidents in China 2010-2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of fatalities in traffic accidents in China 2010-2023 [Dataset]. https://www.statista.com/statistics/276260/number-of-fatalities-in-traffic-accidents-in-china/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2023, China recorded ****** fatalities in traffic accidents across the country. The number of fatalities has increased from ****** in the previous year. Road traffic in China The number of road traffic fatalities in China varies greatly from region to region. Guangdong and Hubei had been the provinces with the highest number of traffic fatalities. All located in the eastern coastal area of China, they had also been the regions with the most traffic accidents in 2023. On the contrary, only a small number of fatalities had been reported in central and western regions of China. Reasons for this imbalance may be found in less traffic volume as well as the existence of fewer urban congested areas.Since 2016, the number of casualties and fatalities from traffic accidents in China has increased significantly, reaching ******* injuries and ****** deaths in 2023. Nevertheless, traffic accidents have emerged as one of the leading causes of death in China. The primary reasons may be unregulated road works and a lack of awareness among Chinese drivers. The development of neither road infrastructure nor driving behavior in China had been able to keep up with the increasing number of traffic participants and registered cars. As of 2003, only ********** vehicles had been registered in China, whereas by 2019 that number had skyrocketed to ************** cars. In 2023 alone, the number of newly registered vehicles in China had amounted to around ************ cars.

  8. R

    Accident Detection Model Dataset

    • universe.roboflow.com
    zip
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accident detection model (2024). Accident Detection Model Dataset [Dataset]. https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    Accident detection model
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Accident Bounding Boxes
    Description

    Accident-Detection-Model

    Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.

    Problem Statement

    • Road accidents are a major problem in India, with thousands of people losing their lives and many more suffering serious injuries every year.
    • According to the Ministry of Road Transport and Highways, India witnessed around 4.5 lakh road accidents in 2019, which resulted in the deaths of more than 1.5 lakh people.
    • The age range that is most severely hit by road accidents is 18 to 45 years old, which accounts for almost 67 percent of all accidental deaths.

    Accidents survey

    https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">

    Literature Survey

    • Sreyan Ghosh in Mar-2019, The goal is to develop a system using deep learning convolutional neural network that has been trained to identify video frames as accident or non-accident.
    • Deeksha Gour Sep-2019, uses computer vision technology, neural networks, deep learning, and various approaches and algorithms to detect objects.

    Research Gap

    • Lack of real-world data - We trained model for more then 3200 images.
    • Large interpretability time and space needed - Using google collab to reduce interpretability time and space required.
    • Outdated Versions of previous works - We aer using Latest version of Yolo v8.

    Proposed methodology

    • We are using Yolov8 to train our custom dataset which has been 3200+ images, collected from different platforms.
    • This model after training with 25 iterations and is ready to detect an accident with a significant probability.

    Model Set-up

    Preparing Custom dataset

    • We have collected 1200+ images from different sources like YouTube, Google images, Kaggle.com etc.
    • Then we annotated all of them individually on a tool called roboflow.
    • During Annotation we marked the images with no accident as NULL and we drew a box on the site of accident on the images having an accident
    • Then we divided the data set into train, val, test in the ratio of 8:1:1
    • At the final step we downloaded the dataset in yolov8 format.
      #### Using Google Collab
    • We are using google colaboratory to code this model because google collab uses gpu which is faster than local environments.
    • You can use Jupyter notebooks, which let you blend code, text, and visualisations in a single document, to write and run Python code using Google Colab.
    • Users can run individual code cells in Jupyter Notebooks and quickly view the results, which is helpful for experimenting and debugging. Additionally, they enable the development of visualisations that make use of well-known frameworks like Matplotlib, Seaborn, and Plotly.
    • In Google collab, First of all we Changed runtime from TPU to GPU.
    • We cross checked it by running command ‘!nvidia-smi’
      #### Coding
    • First of all, We installed Yolov8 by the command ‘!pip install ultralytics==8.0.20’
    • Further we checked about Yolov8 by the command ‘from ultralytics import YOLO from IPython.display import display, Image’
    • Then we connected and mounted our google drive account by the code ‘from google.colab import drive drive.mount('/content/drive')’
    • Then we ran our main command to run the training process ‘%cd /content/drive/MyDrive/Accident Detection model !yolo task=detect mode=train model=yolov8s.pt data= data.yaml epochs=1 imgsz=640 plots=True’
    • After the training we ran command to test and validate our model ‘!yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data.yaml’ ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt conf=0.25 source=data/test/images’
    • Further to get result from any video or image we ran this command ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source="/content/drive/MyDrive/Accident-Detection-model/data/testing1.jpg/mp4"’
    • The results are stored in the runs/detect/predict folder.
      Hence our model is trained, validated and tested to be able to detect accidents on any video or image.

    Challenges I ran into

    I majorly ran into 3 problems while making this model

    • I got difficulty while saving the results in a folder, as yolov8 is latest version so it is still underdevelopment. so i then read some blogs, referred to stackoverflow then i got to know that we need to writ an extra command in new v8 that ''save=true'' This made me save my results in a folder.
    • I was facing problem on cvat website because i was not sure what
  9. Indicator 3.6.1: Death rate due to road traffic injuries by sex (per 100 000...

    • sdgs.amerigeoss.org
    Updated Sep 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2021). Indicator 3.6.1: Death rate due to road traffic injuries by sex (per 100 000 population) [Dataset]. https://sdgs.amerigeoss.org/datasets/undesa::indicator-3-6-1-death-rate-due-to-road-traffic-injuries-by-sex-per-100-000-population
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset provided by
    United Nations Department of Economic and Social Affairshttps://www.un.org/en/desa
    Authors
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Death rate due to road traffic injuries by sex (per 100 000 population)Series Code: SH_STA_TRAFRelease Version: 2021.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.6.1: Death rate due to road traffic injuriesTarget 3.6: By 2020, halve the number of global deaths and injuries from road traffic accidentsGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  10. Albania AL: Road Fatalities: Per One Million Inhabitants

    • ceicdata.com
    Updated Jun 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). Albania AL: Road Fatalities: Per One Million Inhabitants [Dataset]. https://www.ceicdata.com/en/albania/road-traffic-and-road-accident-fatalities-non-oecd-member-annual/al-road-fatalities-per-one-million-inhabitants
    Explore at:
    Dataset updated
    Jun 16, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Albania
    Description

    Albania Road Fatalities: Per One Million Inhabitants data was reported at 6.992 Ratio in 2023. This records an increase from the previous number of 5.904 Ratio for 2022. Albania Road Fatalities: Per One Million Inhabitants data is updated yearly, averaging 9.305 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 13.125 Ratio in 1994 and a record low of 5.904 Ratio in 2022. Albania Road Fatalities: Per One Million Inhabitants data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Albania – Table AL.OECD.ITF: Road Traffic and Road Accident Fatalities: Non OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made.

  11. Z

    Data from: DATABASE FOR THE ANALYSIS OF ROAD ACCIDENTS IN EUROPE

    • data.niaid.nih.gov
    • produccioncientifica.ugr.es
    • +2more
    Updated Oct 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    José Navarro-Moreno (2022). DATABASE FOR THE ANALYSIS OF ROAD ACCIDENTS IN EUROPE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7253071
    Explore at:
    Dataset updated
    Oct 26, 2022
    Dataset provided by
    Francisco Calvo-Poyo
    José Navarro-Moreno
    Juan de Oña
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    This database that can be used for macro-level analysis of road accidents on interurban roads in Europe. Through the variables it contains, road accidents can be explained using variables related to economic resources invested in roads, traffic, road network, socioeconomic characteristics, legislative measures and meteorology. This repository contains the data used for the analysis carried out in the papers:

    1. Calvo-Poyo F., Navarro-Moreno J., de Oña J. (2020) Road Investment and Traffic Safety: An International Study. Sustainability 12:6332. https://doi.org/10.3390/su12166332

    2. Navarro-Moreno J., Calvo-Poyo F., de Oña J. (2022) Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Int J Sustain Transp 1–11. https://doi.org/10.1080/15568318.2022.2082344

    3. Navarro-Moreno, J., Calvo-Poyo, F., de Oña, J. (2022) Investment in roads and traffic safety: linked to economic development? A European comparison. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-22567

    The file with the database is available in excel.

    DATA SOURCES

    The database presents data from 1998 up to 2016 from 20 european countries: Austria, Belgium, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom. Crash data were obtained from the United Nations Economic Commission for Europe (UNECE) [2], which offers enough level of disaggregation between crashes occurring inside versus outside built-up areas.

    With reference to the data on economic resources invested in roadways, deserving mention –given its extensive coverage—is the database of the Organisation for Economic Cooperation and Development (OECD), managed by the International Transport Forum (ITF) [1], which collects data on investment in the construction of roads and expenditure on their maintenance, following the definitions of the United Nations System of National Accounts (2008 SNA). Despite some data gaps, the time series present consistency from one country to the next. Moreover, to confirm the consistency and complete missing data, diverse additional sources, mainly the national Transport Ministries of the respective countries were consulted. All the monetary values were converted to constant prices in 2015 using the OECD price index.

    To obtain the rest of the variables in the database, as well as to ensure consistency in the time series and complete missing data, the following national and international sources were consulted:

    Eurostat [3]

    Directorate-General for Mobility and Transport (DG MOVE). European Union [4]

    The World Bank [5]

    World Health Organization (WHO) [6]

    European Transport Safety Council (ETSC) [7]

    European Road Safety Observatory (ERSO) [8]

    European Climatic Energy Mixes (ECEM) of the Copernicus Climate Change [9]

    EU BestPoint-Project [10]

    Ministerstvo dopravy, República Checa [11]

    Bundesministerium für Verkehr und digitale Infrastruktur, Alemania [12]

    Ministerie van Infrastructuur en Waterstaat, Países Bajos [13]

    National Statistics Office, Malta [14]

    Ministério da Economia e Transição Digital, Portugal [15]

    Ministerio de Fomento, España [16]

    Trafikverket, Suecia [17]

    Ministère de l’environnement de l’énergie et de la mer, Francia [18]

    Ministero delle Infrastrutture e dei Trasporti, Italia [19–25]

    Statistisk sentralbyrå, Noruega [26-29]

    Instituto Nacional de Estatística, Portugal [30]

    Infraestruturas de Portugal S.A., Portugal [31–35]

    Road Safety Authority (RSA), Ireland [36]

    DATA BASE DESCRIPTION

    The database was made trying to combine the longest possible time period with the maximum number of countries with complete dataset (some countries like Lithuania, Luxemburg, Malta and Norway were eliminated from the definitive dataset owing to a lack of data or breaks in the time series of records). Taking into account the above, the definitive database is made up of 19 variables, and contains data from 20 countries during the period between 1998 and 2016. Table 1 shows the coding of the variables, as well as their definition and unit of measure.

    Table. Database metadata

    Code

    Variable and unit

    fatal_pc_km

    Fatalities per billion passenger-km

    fatal_mIn

    Fatalities per million inhabitants

    accid_adj_pc_km

    Accidents per billion passenger-km

    p_km

    Billions of passenger-km

    croad_inv_km

    Investment in roads construction per kilometer, €/km (2015 constant prices)

    croad_maint_km

    Expenditure on roads maintenance per kilometer €/km (2015 constant prices)

    prop_motorwa

    Proportion of motorways over the total road network (%)

    populat

    Population, in millions of inhabitants

    unemploy

    Unemployment rate (%)

    petro_car

    Consumption of gasolina and petrol derivatives (tons), per tourism

    alcohol

    Alcohol consumption, in liters per capita (age > 15)

    mot_index

    Motorization index, in cars per 1,000 inhabitants

    den_populat

    Population density, inhabitants/km2

    cgdp

    Gross Domestic Product (GDP), in € (2015 constant prices)

    cgdp_cap

    GDP per capita, in € (2015 constant prices)

    precipit

    Average depth of rain water during a year (mm)

    prop_elder

    Proportion of people over 65 years (%)

    dps

    Demerit Point System, dummy variable (0: no; 1: yes)

    freight

    Freight transport, in billions of ton-km

    ACKNOWLEDGEMENTS

    This database was carried out in the framework of the project “Inversión en carreteras y seguridad vial: un análisis internacional (INCASE)”, financed by: FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/Proyecto RTI2018-101770-B-I00, within Spain´s National Program of R+D+i Oriented to Societal Challenges.

    Moreover, the authors would like to express their gratitude to the Ministry of Transport, Mobility and Urban Agenda of Spain (MITMA), and the Federal Ministry of Transport and Digital Infrastructure of Germany (BMVI) for providing data for this study.

    REFERENCES

    1. International Transport Forum OECD iLibrary | Transport infrastructure investment and maintenance.

    2. United Nations Economic Commission for Europe UNECE Statistical Database Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS/?rxid=18ad5d0d-bd5e-476f-ab7c-40545e802eeb (accessed on Apr 28, 2020).

    3. European Commission Database - Eurostat Available online: https://ec.europa.eu/eurostat/data/database (accessed on Apr 28, 2021).

    4. Directorate-General for Mobility and Transport. European Commission EU Transport in figures - Statistical Pocketbooks Available online: https://ec.europa.eu/transport/facts-fundings/statistics_en (accessed on Apr 28, 2021).

    5. World Bank Group World Bank Open Data | Data Available online: https://data.worldbank.org/ (accessed on Apr 30, 2021).

    6. World Health Organization (WHO) WHO Global Information System on Alcohol and Health Available online: https://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed on Apr 29, 2021).

    7. European Transport Safety Council (ETSC) Traffic Law Enforcement across the EU - Tackling the Three Main Killers on Europe’s Roads; Brussels, Belgium, 2011;

    8. Copernicus Climate Change Service Climate data for the European energy sector from 1979 to 2016 derived from ERA-Interim Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-european-energy-sector?tab=overview (accessed on Apr 29, 2021).

    9. Klipp, S.; Eichel, K.; Billard, A.; Chalika, E.; Loranc, M.D.; Farrugia, B.; Jost, G.; Møller, M.; Munnelly, M.; Kallberg, V.P.; et al. European Demerit Point Systems : Overview of their main features and expert opinions. EU BestPoint-Project 2011, 1–237.

    10. Ministerstvo dopravy Serie: Ročenka dopravy; Ročenka dopravy; Centrum dopravního výzkumu: Prague, Czech Republic;

    11. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2003/2004; Hamburg, Germany, 2004; ISBN 3871542946.

    12. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2018/2019. In Verkehrsdynamik; Flensburg, Germany, 2018 ISBN 9783000612947.

    13. Ministerie van Infrastructuur en Waterstaat Rijksjaarverslag 2018 a Infrastructuurfonds; The Hague, Netherlands, 2019; ISBN 0921-7371.

    14. Ministerie van Infrastructuur en Milieu Rijksjaarverslag 2014 a Infrastructuurfonds; The Hague, Netherlands, 2015; ISBN 0921- 7371.

    15. Ministério da Economia e Transição Digital Base de Dados de Infraestruturas - GEE Available online: https://www.gee.gov.pt/pt/publicacoes/indicadores-e-estatisticas/base-de-dados-de-infraestruturas (accessed on Apr 29, 2021).

    16. Ministerio de Fomento. Dirección General de Programación Económica y Presupuestos. Subdirección General de Estudios Económicos y Estadísticas Serie: Anuario estadístico; NIPO 161-13-171-0; Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento: Madrid, Spain;

    17. Trafikverket The Swedish Transport Administration Annual report: 2017; 2018; ISBN 978-91-7725-272-6.

    18. Ministère de l’Équipement, du T. et de la M. Mémento de statistiques des transports 2003; Ministère de l’environnement de l’énergie et de la mer, 2005;

    19. Ministero delle Infrastrutture e dei Trasporti Conto Nazionale delle

  12. C

    Chile CL: Road Fatalities: Per One Million Vehicle-km

    • ceicdata.com
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Chile CL: Road Fatalities: Per One Million Vehicle-km [Dataset]. https://www.ceicdata.com/en/chile/road-traffic-and-road-accident-fatalities-oecd-member-annual
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2018 - Dec 1, 2021
    Area covered
    Chile
    Description

    CL: Road Fatalities: Per One Million Vehicle-km data was reported at 42.928 Ratio in 2021. This records a decrease from the previous number of 47.360 Ratio for 2020. CL: Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 45.296 Ratio from Dec 2018 (Median) to 2021, with 4 observations. The data reached an all-time high of 58.716 Ratio in 2018 and a record low of 42.928 Ratio in 2021. CL: Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Chile – Table CL.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD FATALITIES Data do not include suicides. Since 2019, data include also killed after a road crash involving a train. ROAD TRAFFIC Data refer only to interurban road motor vehicle traffic. [STAT_CONC_DEF] ROAD FATALITIES Until 2018, data refer to fatalities within 24 hours after the crash occurred. An adjustment factor of 1.3 was used to comply with the 30-days definition, as suggested by the World Health Organisation (WHO). Since 2019, data refer to fatalities within 48 hours after the crash occurred. An adjustment factor of 1.2 was used to comply with the 30-days definition, as suggested by the World Health Organisation (WHO). ROAD TRAFFIC In 2019, there has been a change in the methodology.

  13. O

    Crash data from Queensland roads

    • data.qld.gov.au
    • devweb.dga.links.com.au
    • +1more
    csv
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transport and Main Roads (2025). Crash data from Queensland roads [Dataset]. https://www.data.qld.gov.au/dataset/crash-data-from-queensland-roads
    Explore at:
    csv(196.5 KiB), csv(303 KiB), csv(196.5 MiB), csv(3 MiB), csv(1 MiB), csv(2 MiB)Available download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Transport and Main Roads
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Overview:

    Information on location and characteristics of crashes in Queensland for all reported Road Traffic Crashes occurred from 1 January 2001 to 30 June 2024.

    Fatal, Hospitalisation, Medical treatment and Minor injury:

    This dataset contains information on crashes reported to the police which resulted from the movement of at least 1 road vehicle on a road or road related area. Crashes listed in this resource have occurred on a public road and meet one of the following criteria:

    • a person is killed or injured, or
    • at least 1 vehicle was towed away, or
    • the value of the property damage meets the appropriate criteria listed below.

    Property damage:

    1. $2500 or more damage to property other than vehicles (after 1 December 1999)
    2. $2500 or more damage to vehicle and/or other property (after 1 December 1991 and before 1 December 1999)
    3. value of property damage is greater than $1000 (before December 1991).

    Please note:

    • This data has been extracted from the Queensland Road Crash Database.
    • Information held in the Road Crash Database on events occurring within the last 12 months is considered preliminary as investigations into crashes can take up to 1 year to finalise.
    • Property damage only crashes ceased to be reported/recorded by Queensland Police Service after 31 December 2010.
    • These crash location coordinates reference the current Australian geodetic datum is GDA2020 (previously it was GDA94).
  14. f

    Data from: S1 Dataset -

    • plos.figshare.com
    xlsx
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Binyam Gebrehiwet Tesfay; Tensay Kahsay Welegebriel; Desta Hailu Aregawi; Mamush Gidey Abrha; Berhe Gebrehiwot Tewele; Fissha Brhane Mesele; Fiseha Abadi Gebreanenia; Kelali Goitom Weldu (2025). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0308584.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Binyam Gebrehiwet Tesfay; Tensay Kahsay Welegebriel; Desta Hailu Aregawi; Mamush Gidey Abrha; Berhe Gebrehiwot Tewele; Fissha Brhane Mesele; Fiseha Abadi Gebreanenia; Kelali Goitom Weldu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundGlobally, road traffic accidents (RTAs) cause over 1.35 million deaths each year, with an additional 50 million people suffering disabilities. Ethiopia has the highest number of road traffic accidents, with over 14,000 people killed and over 45,000 injured annually. This study aimed to assess survival status and predictors of mortality among road traffic accident adult patients admitted to intensive care units of Referral Hospitals in Tigray, 2024.MethodsAn institution-based retrospective follow-up study design was conducted from January 8, 2019, to December 11, 2023, on 333 patient charts. A bivariable Cox-regression analysis was performed to estimate crude hazard ratios (CHR). Subsequently, a multivariable Cox regression analysis was performed to estimate the Adjusted Hazard Ratios (AHR). Finally, AHR with p-value less than 0.05 was used to measure the association between dependent and independent variables.ResultThe incidence of mortality for road traffic accident victims, was 21 per 1000 person-days observation with (95% CI: 16, 27.6) and the median survival time was 14 days. The predictors of mortality in this study were the value of oxygen saturation on admission ≤ 89% (AHR = 4.9; 95%CI: 1.4–17.2), Intracranial hemorrhage (AHR = 3.3; 95% CI: 1.02–11), chest injury (AHR = 3.2; 95%CI: 1.38–7.59), victims with age catgories of 31–45 years (AHR = 0.3; 95% CI: 0.1–0.88) and 46–60 years (AHR = 0.22; 95% CI: 0.06–0.89).ConclusionA concerningly high mortality rate from car accidents were found in Referral Hospitals of Tigray. To improve the survival rates, healthcare providers should focus on victims with very low oxygen levels, head injuries, chest injuries, and older victims.

  15. Number of deaths due to road accidents India 2022, by age of the victim

    • statista.com
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of deaths due to road accidents India 2022, by age of the victim [Dataset]. https://www.statista.com/statistics/751799/india-road-accident-deaths-by-age-of-the-victim/
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    India
    Description

    In 2022, the number of deaths due to road accidents in India among victims between 25 to 35 years amounted to nearly 42.6 thousand, the most compared to other age groups. That year, there were over 169 thousand accidental fatalities across the south Asian country. Over-speeding was the leading contributor of accidents. Combined, state and national highways recorded around 258 thousand road accidents in 2022. This number had dropped significantly in 2016, before increasing again in recent years.

    Accident demographics

    The Indian subcontinent ranked first in terms of road accident deaths according to the World Road Statistics which comprised of 199 countries. A majority of victims were two-wheeler commuters. Additionally, pedestrians made up a high share of victims as well, reflecting the lack of infrastructure, be it improper footpaths and the lack of foot-over bridges or negligence of traffic rules. About 70 percent of the road accidents in India accounted for about six percent of the global road traffic accidents.

    Accident prevention

    Poor enforcement of fines, in addition to mild punishments and corruption encourages drivers, especially among young Indians, to engage in rash driving. Accident awareness programs were initiated by the government among the motorists, along with the National Road Safety Policy to encourage safe transport, strict enforcement of safety laws and fines and establishment of road safety database.

  16. United States US: Road Fatalities: Per One Million Vehicle-km

    • ceicdata.com
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States US: Road Fatalities: Per One Million Vehicle-km [Dataset]. https://www.ceicdata.com/en/united-states/road-traffic-and-road-accident-fatalities-oecd-member-annual/us-road-fatalities-per-one-million-vehiclekm
    Explore at:
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    United States
    Description

    United States US: Road Fatalities: Per One Million Vehicle-km data was reported at 7.805 Ratio in 2023. This records a decrease from the previous number of 8.265 Ratio for 2022. United States US: Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 8.404 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 10.731 Ratio in 1994 and a record low of 6.725 Ratio in 2014. United States US: Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD TRAFFIC IRTAD - Data refer to road motor vehicle traffic of motorised two-wheelers, passenger cars, goods road motor vehicles and buses. [STAT_CONC_DEF] ROAD TRAFFIC IRTAD - Data are calculated using automatic and manual roadside traffic counts.

  17. Number of road accidents in India 2005-2022

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of road accidents in India 2005-2022 [Dataset]. https://www.statista.com/statistics/746954/india-number-of-road-accidents/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The number of road accidents across India amounted to around *** thousand in 2022. Each year, about ***** to **** percent of the GDP of the country was invested in road accidents. About ** percent of accidents involved young Indians. The country has about *** percent of the global vehicle population but it accounted for *** percent of the world's road traffic accidents.

  18. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/67fe79e3393a986ec5cf8dbe/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 126 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/67fe79fbed87b81608546745/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.56 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/67fe7a20694d57c6b1cf8db0/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 156 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/67fe7a40ed87b81608546746/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 331 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/67fe7a5f393a986ec5cf8dc0/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attachm

  19. Turkey TR: Road Fatalities: Per One Million Vehicle-km

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Turkey TR: Road Fatalities: Per One Million Vehicle-km [Dataset]. https://www.ceicdata.com/en/turkey/road-traffic-and-road-accident-fatalities-oecd-member-annual/tr-road-fatalities-per-one-million-vehiclekm
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2015 - Dec 1, 2022
    Area covered
    Türkiye
    Description

    Turkey TR: Road Fatalities: Per One Million Vehicle-km data was reported at 15.204 Ratio in 2022. This records a decrease from the previous number of 16.269 Ratio for 2021. Turkey TR: Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 19.949 Ratio from Dec 2015 (Median) to 2022, with 8 observations. The data reached an all-time high of 29.999 Ratio in 2015 and a record low of 15.204 Ratio in 2022. Turkey TR: Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Turkey – Table TR.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD TRAFFIC Data come from odometer readings and include all motor vehicle movements on the territory, irrespective of the country of registration.

  20. Russia Road Fatalities: Per One Million Vehicle-km

    • ceicdata.com
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Russia Road Fatalities: Per One Million Vehicle-km [Dataset]. https://www.ceicdata.com/en/russia/road-traffic-and-road-accident-fatalities-non-oecd-member-annual
    Explore at:
    Dataset updated
    Feb 27, 2024
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2018
    Area covered
    Russia
    Description

    Road Fatalities: Per One Million Vehicle-km data was reported at 799.631 Ratio in 2018. Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 799.631 Ratio from Dec 2018 (Median) to 2018, with 1 observations. The data reached an all-time high of 799.631 Ratio in 2018 and a record low of 799.631 Ratio in 2018. Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Russian Federation – Table RU.OECD.ITF: Road Traffic and Road Accident Fatalities: Non OECD Member: Annual. ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista Research Department (2023). Number of road accidents per one million inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3708/road-accidents-in-the-us/
Organization logo

Number of road accidents per one million inhabitants in the United States 2014-2029

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 18, 2023
Dataset provided by
Statistahttp://statista.com/
Authors
Statista Research Department
Area covered
United States
Description

The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.

Search
Clear search
Close search
Google apps
Main menu