91 datasets found
  1. d

    Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 2 - New...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 2 - New York [Dataset]. https://catalog.data.gov/dataset/impaired-driving-death-rate-by-age-and-gender-2012-2014-region-2-new-york
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Area covered
    New York
    Description

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

  2. US Traffic Fatality Records

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Transportation (2019). US Traffic Fatality Records [Dataset]. https://www.kaggle.com/datasets/usdot/nhtsa-traffic-fatalities
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    Department of Transportation
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.

    FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.

    FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.

    NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.

    Content

    There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]. Fork this kernel to get started.

    Acknowledgements

    This dataset was provided by the National Highway Traffic Safety Administration.

  3. Road safety statistics: data tables

    • gov.uk
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2024). Road safety statistics: data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Transport
    Description

    These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.

    Latest data and table index

    The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.

    A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).

    All collision, casualty and vehicle tables

    https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)

    Historic trends (RAS01)

    RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)

    RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)

    Road user type (RAS02)

    RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)

    RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)

    RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)

    Road type (RAS03)

    RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)

    RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa

  4. V

    Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 7 - Kansas...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Apr 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 7 - Kansas City [Dataset]. https://data.virginia.gov/dataset/impaired-driving-death-rate-by-age-and-sex-2012-2014-region-7-kansas-city
    Explore at:
    rdf, json, xsl, csvAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Area covered
    Kansas City
    Description

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

  5. d

    Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 5 - Chicago...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 5 - Chicago [Dataset]. https://catalog.data.gov/dataset/impaired-driving-death-rate-by-age-and-gender-2012-2014-region-5-chicago
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Area covered
    Chicago
    Description

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

  6. d

    Traffic Crashes - People

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Traffic Crashes - People [Dataset]. https://catalog.data.gov/dataset/traffic-crashes-people
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.

  7. Road traffic fatalities per one million inhabitants in the United States...

    • statista.com
    Updated Dec 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Road traffic fatalities per one million inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3708/road-accidents-in-the-us/
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.

  8. d

    Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 10 -...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 10 - Seattle [Dataset]. https://catalog.data.gov/dataset/impaired-driving-death-rate-by-age-and-gender-2012-2014-region-10-seattle
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Area covered
    Seattle
    Description

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

  9. Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 9 - San...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 9 - San Francisco [Dataset]. https://catalog.data.gov/dataset/impaired-driving-death-rate-by-age-and-gender-2012-2014-region-9-san-francisco
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    San Francisco
    Description

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

  10. d

    Data from: Traffic Crashes

    • data.detroitmi.gov
    • detroitdata.org
    • +1more
    Updated Mar 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2019). Traffic Crashes [Dataset]. https://data.detroitmi.gov/maps/d837b05bdd9643698be30dfedbab0272
    Explore at:
    Dataset updated
    Mar 22, 2019
    Dataset authored and provided by
    City of Detroit
    Area covered
    Description

    The State of Michigan’s criteria for a crash is a motor vehicle that was in transport and on the roadway, that resulted in death, injury, or property damage of $1,000 or more. Traffic crashes in this dataset are derived from SEMCOG’s Open Data Portal. Each row in the dataset represents a traffic crash that includes data about when and where the crash occurred, road conditions, number of individuals involved in the crash, and various factors that apply to the crash (Train, Bus, Deer, etc.). Also included is the number of injuries and fatalities that are associated with the crash.

  11. o

    Road traffic deaths data by country

    • data.opendevelopmentmekong.net
    • gimi9.com
    Updated Nov 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Road traffic deaths data by country [Dataset]. https://data.opendevelopmentmekong.net/dataset/road-traffic-deaths-data-by-country
    Explore at:
    Dataset updated
    Nov 20, 2019
    Description

    The World Health Organization Database provides data on road traffic deaths for the years 2013 and 2016 for all countries. It shows the estimated number of road traffic deaths and the estimated road traffic death rate per 100,000 population.

  12. A

    ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 4 -...

    • analyst-2.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 4 - Atlanta’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-impaired-driving-death-rate-by-age-and-gender-2012-2014-region-4-atlanta-464e/d7f7a973/?iid=001-833&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Atlanta
    Description

    Analysis of ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 4 - Atlanta’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/cdfda3a9-773a-411b-824a-e6fa145c3892 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

    --- Original source retains full ownership of the source dataset ---

  13. Road Traffic Injuries

    • data.ca.gov
    • data.chhs.ca.gov
    • +3more
    pdf, xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Road Traffic Injuries [Dataset]. https://data.ca.gov/dataset/road-traffic-injuries
    Explore at:
    zip, xlsx, pdfAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  14. d

    Traffic Crashes - Vision Zero Chicago Traffic Fatalities

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Traffic Crashes - Vision Zero Chicago Traffic Fatalities [Dataset]. https://catalog.data.gov/dataset/traffic-crashes-vision-zero-chicago-traffic-fatalities
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    Traffic fatalities within the City of Chicago that are included in Vision Zero Chicago (VZC) statistics. Vision Zero is Chicago’s commitment to eliminating fatalities and serious injuries from traffic crashes. The VZC Traffic Fatality List is compiled by the Chicago Department of Transportation (CDOT) after monthly reviews of fatal traffic crash information provided by Chicago Police Department’s Major Accident Investigation Unit (MAIU). CDOT uses a standardized process – sometimes differing from other sources and everyday use of the term -- to determine whether a death is a “traffic fatality.” Therefore, the traffic fatalities included in this list may differ from the fatal crashes reported in the full Traffic Crashes dataset (https://data.cityofchicago.org/d/85ca-t3if). Official traffic crash data are published by the Illinois Department of Transportation (IDOT) on an annual basis. This VZC Traffic Fatality List is updated monthly. Once IDOT publishes its crash data for a year, this dataset is edited to reflect IDOT’s findings. VZC Traffic Fatalities can be linked with other traffic crash datasets using the “Person_ID” field. State of Illinois considers a “traffic fatality” as any death caused by a traffic crash involving a motor vehicle, within 30 days of the crash. Fatalities that meet this definition are included in this VZC Traffic Fatality List unless excluded by any criteria below. There may be records in this dataset that do not appear as fatalities in the other datasets. The following criteria exclude a death from being considered a "traffic fatality," and are derived from Federal and State reporting standards. The Medical Examiner determined that the primary cause of the fatality was not the traffic crash, including: a. The fatality was reported as a suicide based on a police investigation. b. The fatality was reported as a homicide in which the "party at fault" intentionally inflicted serious bodily harm that caused the victim's death. c. The fatality was caused directly and exclusively by a medical condition or the fatality was not attributable to road user movement on a public roadway. (Note: If a person driving suffers a medical emergency and consequently hits and kills another road user, the other road user is included, although the driver suffering a medical emergency is excluded.) The crash did not occur within a trafficway. The crash involved a train or other such mode of transport within the rail dedicated right-of-way. The fatality was on a roadway not under Chicago Police Department jurisdiction, including: a. The fatality was occurred on an expressway. The City of Chicago does not have oversight on the expressway system. However, a fatality on expressway ramps occurring within the City jurisdiction will be counted in VZC Traffic Fatality List. b. The fatality occurred outside City limits. Crashes on streets along the City boundary may be assigned to another jurisdiction after the investigation if it is determined that the crash started or substantially occurred on the side of the street that is outside the City limits. Jurisdiction of streets along the City boundary are split between City and neighboring jurisdictions along the street centerline. The fatality is not a person (e.g., an animal). Change 12/7/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.

  15. A

    ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 6 -...

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 6 - Dallas’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-impaired-driving-death-rate-by-age-and-gender-2012-2014-region-6-dallas-84ec/30eb04c7/?iid=001-883&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dallas
    Description

    Analysis of ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 6 - Dallas’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/2cd9af03-59d4-4bef-9cdc-68629231a7fa on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

    --- Original source retains full ownership of the source dataset ---

  16. o

    Data from: Tesla Deaths

    • osf.io
    • tesladeaths.com
    • +5more
    Updated Jan 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    I Capulet (2025). Tesla Deaths [Dataset]. http://doi.org/10.17605/OSF.IO/BU5D2
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    Center For Open Science
    Authors
    I Capulet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tesla Deaths is a record of Tesla accidents that involved a driver, occupant, cyclist, motorcyclist, or pedestrian death. We record information about Tesla fatalities that have been reported and as much related crash data as possible such as location of crash, names of deceased. This dataset also tallies claimed and confirmed Tesla autopilot crashes, that is instances when Autopilot was activated during a Tesla crash that resulted in death.

    Latest version of dataset at https://www.tesladeaths.com.

    CSV version available at https://docs.google.com/spreadsheets/d/e/2PACX-1vQs5yOJJxoKKV3Ol9n0X5LSfnNFyE4verpUBdJOQ2BGUnl54IxwTexaZO69D7rT0VHM5JCxIuwijPIm/pub?output=csv

  17. A

    ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 10 -...

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 10 - Seattle’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-impaired-driving-death-rate-by-age-and-gender-2012-2014-region-10-seattle-0047/5be09359/?iid=001-856&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Seattle
    Description

    Analysis of ‘Impaired Driving Death Rate, by Age and Gender, 2012 & 2014, Region 10 - Seattle’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/21e1ad6e-3ba0-4bc5-8749-af7b376a6197 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

    --- Original source retains full ownership of the source dataset ---

  18. R

    Accident Detection Model Dataset

    • universe.roboflow.com
    zip
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accident detection model (2024). Accident Detection Model Dataset [Dataset]. https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    Accident detection model
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Accident Bounding Boxes
    Description

    Accident-Detection-Model

    Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.

    Problem Statement

    • Road accidents are a major problem in India, with thousands of people losing their lives and many more suffering serious injuries every year.
    • According to the Ministry of Road Transport and Highways, India witnessed around 4.5 lakh road accidents in 2019, which resulted in the deaths of more than 1.5 lakh people.
    • The age range that is most severely hit by road accidents is 18 to 45 years old, which accounts for almost 67 percent of all accidental deaths.

    Accidents survey

    https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">

    Literature Survey

    • Sreyan Ghosh in Mar-2019, The goal is to develop a system using deep learning convolutional neural network that has been trained to identify video frames as accident or non-accident.
    • Deeksha Gour Sep-2019, uses computer vision technology, neural networks, deep learning, and various approaches and algorithms to detect objects.

    Research Gap

    • Lack of real-world data - We trained model for more then 3200 images.
    • Large interpretability time and space needed - Using google collab to reduce interpretability time and space required.
    • Outdated Versions of previous works - We aer using Latest version of Yolo v8.

    Proposed methodology

    • We are using Yolov8 to train our custom dataset which has been 3200+ images, collected from different platforms.
    • This model after training with 25 iterations and is ready to detect an accident with a significant probability.

    Model Set-up

    Preparing Custom dataset

    • We have collected 1200+ images from different sources like YouTube, Google images, Kaggle.com etc.
    • Then we annotated all of them individually on a tool called roboflow.
    • During Annotation we marked the images with no accident as NULL and we drew a box on the site of accident on the images having an accident
    • Then we divided the data set into train, val, test in the ratio of 8:1:1
    • At the final step we downloaded the dataset in yolov8 format.
      #### Using Google Collab
    • We are using google colaboratory to code this model because google collab uses gpu which is faster than local environments.
    • You can use Jupyter notebooks, which let you blend code, text, and visualisations in a single document, to write and run Python code using Google Colab.
    • Users can run individual code cells in Jupyter Notebooks and quickly view the results, which is helpful for experimenting and debugging. Additionally, they enable the development of visualisations that make use of well-known frameworks like Matplotlib, Seaborn, and Plotly.
    • In Google collab, First of all we Changed runtime from TPU to GPU.
    • We cross checked it by running command ‘!nvidia-smi’
      #### Coding
    • First of all, We installed Yolov8 by the command ‘!pip install ultralytics==8.0.20’
    • Further we checked about Yolov8 by the command ‘from ultralytics import YOLO from IPython.display import display, Image’
    • Then we connected and mounted our google drive account by the code ‘from google.colab import drive drive.mount('/content/drive')’
    • Then we ran our main command to run the training process ‘%cd /content/drive/MyDrive/Accident Detection model !yolo task=detect mode=train model=yolov8s.pt data= data.yaml epochs=1 imgsz=640 plots=True’
    • After the training we ran command to test and validate our model ‘!yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data.yaml’ ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt conf=0.25 source=data/test/images’
    • Further to get result from any video or image we ran this command ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source="/content/drive/MyDrive/Accident-Detection-model/data/testing1.jpg/mp4"’
    • The results are stored in the runs/detect/predict folder.
      Hence our model is trained, validated and tested to be able to detect accidents on any video or image.

    Challenges I ran into

    I majorly ran into 3 problems while making this model

    • I got difficulty while saving the results in a folder, as yolov8 is latest version so it is still underdevelopment. so i then read some blogs, referred to stackoverflow then i got to know that we need to writ an extra command in new v8 that ''save=true'' This made me save my results in a folder.
    • I was facing problem on cvat website because i was not sure what
  19. Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 6 - Dallas

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 6 - Dallas [Dataset]. https://catalog.data.gov/dataset/impaired-driving-death-rate-by-age-and-gender-2012-2014-region-6-dallas
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

  20. Number Of Deaths By Traffic Accidents

    • hub.tumidata.org
    • fortaleza.tumidata.org
    url
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TUMI (2024). Number Of Deaths By Traffic Accidents [Dataset]. https://hub.tumidata.org/dataset/number_of_deaths_by_traffic_accidents_fortaleza
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    Tumi Inc.http://www.tumi.com/
    Description

    Number Of Deaths By Traffic Accidents
    This dataset falls under the category Planning & Policy Safety of the transport space.
    It contains the following data: Mortality - Brazil Deaths by Place of Occurrence and Year of Death Cause - ICD-BR-10: . 104 Transport Accidents Period:2010-2019 Municipal homicide rate per 100,000 population. Cause - ICDBR-10 (Major groups): V01-V99 Transport accidents by place of occurrence. Source: Datasus, 2019
    This dataset was scouted on 2022-02-23 as part of a data sourcing project conducted by TUMI. License information might be outdated: Check original source for current licensing. The data can be accessed using the following URL / API Endpoint: https://dados.fortaleza.ce.gov.br/dataset/obitos-transitoSee URL for data access and license information.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 2 - New York [Dataset]. https://catalog.data.gov/dataset/impaired-driving-death-rate-by-age-and-gender-2012-2014-region-2-new-york

Impaired Driving Death Rate, by Age and Sex, 2012 & 2014, Region 2 - New York

Explore at:
Dataset updated
Apr 30, 2025
Dataset provided by
Centers for Disease Control and Prevention
Area covered
New York
Description

Rate of deaths by age/gender (per 100,000 population) for people killed in crashes involving a driver with BAC =>0.08%, 2012, 2014. 2012 Source: Fatality Analysis Reporting System (FARS). 2014 Source: National Highway Traffic Administration's (NHTSA) Fatality Analysis Reporting System (FARS), 2014 Annual Report File. Note: Blank cells indicate data are suppressed. Fatality rates based on fewer than 20 deaths are suppressed.

Search
Clear search
Close search
Google apps
Main menu