Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World death rate by year from 1950 to 2025.
This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.
The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.
This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting
The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.
Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. The datasets mainly focus on two major fields first one is First Case which consists of information of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the other one First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.
*This is not a country. This is a ship. The name of the Cruise Ship was not given from the government.
"N+": the age is not specified but greater than N
“No Trace”: some data was not found
“Unspecified”: not available from the authority
“N/A”: for “Last Visited Country(s) of Confirmed Case(s)” column, “N/A” indicates that the confirmed case(s) of those countries do not have any travel history in recent past; in “Age of First Death(s)” column “N/A” indicates that those countries do not have may death case till May 16, 2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group.
Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool
Data includes:
As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm.
As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category.
On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.
CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.
The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON.
“Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results.
Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.
Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.
Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported.
Rates for the most recent days are subject to reporting lags
All data reflects totals from 8 p.m. the previous day.
This dataset is subject to change.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
The European CDC publishes daily statistics on the COVID-19 pandemic. Not just for Europe, but for the entire world. We rely on the ECDC as they collect and harmonize data from around the world which allows us to compare what is happening in different countries.
This dataset has daily level information on the number of affected cases, deaths and recovery etc. from coronavirus. It also contains various other parameters like average life expectancy, population density, smocking population etc. which users can find useful in further prediction that they need to make.
The data is available from 31 Dec,2019.
Give people weekly data so that they can use it to make accurate predictions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides global information on both COVID-19 related deaths and vaccinations from January 5, 2020, to August 4, 2024. It consists of two parts: one tracking COVID-19 cases, deaths, and population statistics, and another monitoring vaccination progress worldwide. This dataset allows for an in-depth analysis of the pandemic’s spread, fatality rates, and the effectiveness of vaccination campaigns across various countries and regions.
Researchers and data analysts can use this dataset to study trends, compare countries, and evaluate public health responses throughout the COVID-19 pandemic.
Analyzing death rates relative to confirmed cases. Examining the percentage of population affected by COVID-19. Evaluating vaccination rates and coverage across different regions. This dataset is ideal for data exploration, statistical analysis, and visualizations related to the COVID-19 pandemic.
What are people dying from?
This question is essential to guide decisions in public health, and find ways to save lives.
Many leading causes of death receive little mainstream attention. If news reports reflected what children died from, they would say that around 1,400 young children die from diarrheal diseases, 1,000 die from malaria, and 1,900 from respiratory infections – every day.
This can change. Over time, death rates from these causes have declined across the world.
A better understanding of the causes of death has led to the development of technologies, preventative measures, and better healthcare, reducing the chances of dying from a wide range of different causes, across all age groups.
In the past, infectious diseases dominated. But death rates from infectious diseases have fallen quickly – faster than other causes. This has led to a shift in the leading causes of death. Now, non-communicable diseases – such as heart diseases and cancers – are the most common causes of death globally.
More progress is possible, and the impact of causes of death can fall further.
On this page, you will find global data and research on leading causes of death and how they can be prevented.
This data can also help understand the burden of disease more broadly, and offer a lens to see the impacts of healthcare and medicine, habits and behaviours, environmental factors, health infrastructure, and more.
By Saloni Dattani, Fiona Spooner, Hannah Ritchie and Max Roser
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attac
Data is collected from mentioned Sources, and further processed and available here in usable format. This Data is used for Exploratory data analysis ( EDA ), and for various visualizations.
Johns Hopkins University : Fetched from GitHub Source - https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/
European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
Insights like following - 1. Changes in number of Confirmed cases over time. 2. Changes in number of Death cases over time. 3. Changes in number of Recovered cases over time.
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus infection is currently the most important health topic. It surely tested and continues to test to the fullest extent the healthcare systems around the world. Although big progress is made in handling this pandemic, a tremendous number of questions are needed to be answered. I hereby present to you the local Bulgarian COVID-19 dataset with some context. It could be used as a comparator because it stands out compared to other countries and deserves analysis.
Context for Bulgarian population: Population - 6 948 445 Median age - 44.7 years Aged >65 - 20.801 % Aged >70 - 13.272%
Summary of the results: - first pandemic wave was weak, probably because of the early state of emergency (5 days after the first confirmed case). Whether this was a good decision or it was too early and just postpone the inevitable is debatable. -healthcare system collapses (probably due to delayed measures) in the second and third waves which resulted in Bulgaria gaining the top ranks for mortality and morbidity tables worldwide and in the EU. - low percentage of vaccinated people results in a prolonged epidemic and delaying the lifting of the preventive measures.
Some of the important moments that should be considered when interpreting the data: 08.03.2020 - Bulgaria confirmed its first two cases. The government issued a nationwide ban on closed-door public events (first lockdown); 13.03.2020- after 16 reported cases in one day, Bulgaria declared a state of emergency for one month until 13.04.2020. Schools, shopping centres, cinemas, restaurants, and other places of business were closed. All sports events were suspended. Only supermarkets, food markets, pharmacies, banks, and gas stations remain open. 03.04.2020 - The National Assembly approved the government's proposal to extend the state of emergency by one month until 13.05.2020; 14.05.2020 - the national emergency was lifted, and in its place was declared a state of an emergency epidemic situation. Schools and daycares remain closed, as well as shopping centers and indoor restaurants; 18.05.2020 - Shopping malls and fitness centers opened; 01.06.2020 - Restaurants and gaming halls opened; 10.07.2020 - discos and bars are closed, the sports events are without an audience; 29.10.2020 - High school and college students are transitioning to online learning; 27.11.2020 - the whole education is online, restaurants, nightclubs, bars, and discos are closed (second lockdown 27.11 - 21.12); 05.12.2020 - the 14-day mortality rate is the highest in the world; 16.01.2021 - some of the students went back to school; 01.03.2021 - restaurants and casinos opened; 22.03.2021 - restaurants, shopping malls, fitness centers, and schools are closed (third lockdown for 10 days - 22.03 - 31.03); 19.04.2021 - children daycare facilities, fitness centers, and nightclubs are opened;
This dataset consists of 447 rows with 29 columns and covers the period 08.03.2020 - 28.05.2021. In the beginning, there are some missing values until the proper statistical report was established.
A publication proposal is sent to anyone who wishes to collaborate. Based on the results and the value of the findings and the relevance of the topic it is expected to publish: - in a local journal (guaranteed); - in a SCOPUS journal (highly probable); - in an IF journal (if the results are really insightful).
The topics could be, but not limited to: - descriptive analysis of the pandemic outbreak in the country; - prediction of the pandemic or the vaccination rate; - discussion about the numbers compared to other countries/world; - discussion about the government decisions; - estimating cut-off values for step-down or step-up of the restrictions.
If you find an error, have a question, or wish to make a suggestion, I encourage you to reach me.
How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
[Edit 12/09/2020] You will now find in the files below the last 30 days, too many people do not respect the request not to recover too often the dataset (no interest in recovering every minute while the file changes 4 or 5 times a day) If you want access to the entire history, contact me [Edit 31/03/2020] Since yesterday, I made sure to have the data of the day since the ESSC, so the data of the same day are now available and updated several times a day (about every hour) as the new figures fall all over the world. The data of the previous day is always consolidated around 2am (it is no longer 1h since the time change). If you only want to have the complete data, just don't take into account the last day (today’s date) Here I share the data that I compile with the famous coronavirus infection world map created and maintained by The Johns Hopkins University and which serve me to display ** CoronaVirus statistics worldwide and by country** They share the day’s data each night on a GitHub deposit. My tools compile this new data as soon as they are available and I share the result here. This data is used to display tables and graphs on the CoronaVirus website (Covid19) of Politologue.com https://coronavirus.politologue.com/ This data will allow you to make your own graphs and analyses if you look at the subject. I do not oblige you to do it, but if my compilation allows you to do something about it and saved you time, a link to https://coronavirus.politologue.com/ will be appreciable. Information in files (csv and json) — Number of cases — Number of deaths — Number of healing — Death rate (percentage) — Healing rate (percentage) — Infection rate (persons still infected, not deceased or cured) (percentage) — And for data by country, you will find a field “country” If you integrate the client-side json or csv on a site or application, please keep a cache on your servers without risking an unexpected load on my servers.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The COVID Tracking Project was a volunteer organization launched from The Atlantic and dedicated to collecting and publishing the data required to understand the COVID-19 outbreak in the United States. Our dataset was in use by national and local news organizations across the United States and by research projects and agencies worldwide.
Every day, we collected data on COVID-19 testing and patient outcomes from all 50 states, 5 territories, and the District of Columbia by visiting official public health websites for those jurisdictions and entering reported values in a spreadsheet. The files in this dataset represent the entirety of our COVID-19 testing and outcomes data collection from March 7, 2020 to March 7, 2021. This dataset includes official values reported by each state on each day of antigen, antibody, and PCR test result totals; the total number of probable and confirmed cases of COVID-19; the number of people currently hospitalized, in intensive care, and on a ventilator; the total number of confirmed and probable COVID-19 deaths; and more.
Methods This dataset was compiled by about 300 volunteers with The COVID Tracking Project from official sources of state-level COVID-19 data such as websites and press conferences. Every day, a team of about a dozen available volunteers visited these official sources and recorded the publicly reported values in a shared Google Sheet, which was used as a data source to publish the full dataset each day between about 5:30pm and 7pm Eastern time. All our data came from state and territory public health authorities or official statements from state officials. We did not automatically scrape data or attempt to offer a live feed. Our data was gathered and double-checked by humans, and we emphasized accuracy and context over speed. Some data was corrected or backfilled from structured data provided by public health authorities. Additional information about our methods can be found in a series of posts at http://covidtracking.com/analysis-updates.
We offer thanks and heartfelt gratitude for the labor and sacrifice of our volunteers. Volunteers on the Data Entry, Data Quality, and Data Infrastructure teams who granted us permission to use their name publicly are listed in VOLUNTEERS.md
.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World death rate by year from 1950 to 2025.