100+ datasets found
  1. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24235858), csv(74497014), zip, csv(29775349)Available download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  2. Covid19 Global Excess Deaths (daily updates)

    • kaggle.com
    zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2025). Covid19 Global Excess Deaths (daily updates) [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/covid19-global-excess-deaths-daily-updates
    Explore at:
    zip(2989004967 bytes)Available download formats
    Dataset updated
    Dec 2, 2025
    Authors
    Joakim Arvidsson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Daily updates of Covid-19 Global Excess Deaths from the Economist's GitHub repository: https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model

    Interpreting estimates

    Estimating excess deaths for every country every day since the pandemic began is a complex and difficult task. Rather than being overly confident in a single number, limited data means that we can often only give a very very wide range of plausible values. Focusing on central estimates in such cases would be misleading: unless ranges are very narrow, the 95% range should be reported when possible. The ranges assume that the conditions for bootstrap confidence intervals are met. Please see our tracker page and methodology for more information.

    New variants

    The Omicron variant, first detected in southern Africa in November 2021, appears to have characteristics that are different to earlier versions of sars-cov-2. Where this variant is now dominant, this change makes estimates uncertain beyond the ranges indicated. Other new variants may do the same. As more data is incorporated from places where new variants are dominant, predictions improve.

    Non-reporting countries

    Turkmenistan and the Democratic People's Republic of Korea have not reported any covid-19 figures since the start of the pandemic. They also have not published all-cause mortality data. Exports of estimates for the Democratic People's Republic of Korea have been temporarily disabled as it now issues contradictory data: reporting a significant outbreak through its state media, but zero confirmed covid-19 cases/deaths to the WHO.

    Acknowledgements

    A special thanks to all our sources and to those who have made the data to create these estimates available. We list all our sources in our methodology. Within script 1, the source for each variable is also given as the data is loaded, with the exception of our sources for excess deaths data, which we detail in on our free-to-read excess deaths tracker as well as on GitHub. The gradient booster implementation used to fit the models is aGTBoost, detailed here.

    Calculating excess deaths for the entire world over multiple years is both complex and imprecise. We welcome any suggestions on how to improve the model, be it data, algorithm, or logic. If you have one, please open an issue.

    The Economist would also like to acknowledge the many people who have helped us refine the model so far, be it through discussions, facilitating data access, or offering coding assistance. A special thanks to Ariel Karlinsky, Philip Schellekens, Oliver Watson, Lukas Appelhans, Berent Å. S. Lunde, Gideon Wakefield, Johannes Hunger, Carol D'Souza, Yun Wei, Mehran Hosseini, Samantha Dolan, Mollie Van Gordon, Rahul Arora, Austin Teda Atmaja, Dirk Eddelbuettel and Tom Wenseleers.

    All coding and data collection to construct these models (and make them update dynamically) was done by Sondre Ulvund Solstad. Should you have any questions about them after reading the methodology, please open an issue or contact him at sondresolstad@economist.com.

    Suggested citation The Economist and Solstad, S. (corresponding author), 2021. The pandemic’s true death toll. [online] The Economist. Available at: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates [Accessed ---]. First published in the article "Counting the dead", The Economist, issue 20, 2021.

  3. COVID-19 data from World

    • kaggle.com
    zip
    Updated Oct 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arslan Ali (2022). COVID-19 data from World [Dataset]. https://www.kaggle.com/datasets/arslanali4343/covid19-data-from-world
    Explore at:
    zip(11526460 bytes)Available download formats
    Dataset updated
    Oct 2, 2022
    Authors
    Arslan Ali
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    I need a small help, if you vist and subscribe my website codetechguru

    Covid-19 complete dataset updated daily from Our World in Data

    SUMMARY👇

    Source and more information: https://github.com/owid/covid-19-data/tree/master/public/data

    💯**Data is synced hourly**

    Metrics:

    ✔️ Vaccinations ✔️ Tests & positivity ✔️ Hospital & ICU ✔️ Confirmed cases ✔️ Confirmed deaths ✔️ Reproduction rate ✔️ Policy responses ✔️ Other variables of interest

  4. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(164006), csv(5034), csv(476576), csv(2026589), csv(5401561), csv(463460), csv(419332), csv(200270), csv(16301), zipAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  5. N

    Nigeria Death rate - data, chart | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Nigeria Death rate - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Nigeria/Death_rate/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Jan 18, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    Nigeria
    Description

    Nigeria: Death rate, per 1000 people: The latest value from 2023 is 11.74 deaths per 1000 people, a decline from 11.95 deaths per 1000 people in 2022. In comparison, the world average is 7.70 deaths per 1000 people, based on data from 196 countries. Historically, the average for Nigeria from 1960 to 2023 is 18.72 deaths per 1000 people. The minimum value, 11.74 deaths per 1000 people, was reached in 2023 while the maximum of 26.46 deaths per 1000 people was recorded in 1960.

  6. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  7. COVID-19 Global Case and Death Data

    • kaggle.com
    zip
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
    Explore at:
    zip(81724234 bytes)Available download formats
    Dataset updated
    Dec 4, 2023
    Authors
    The Devastator
    Description

    COVID-19 Global Case and Death Data

    Global COVID-19 Cases and Deaths Over Time

    By Coronavirus (COVID-19) Data Hub [source]

    About this dataset

    The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

    The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

    Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

    Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

    To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

    It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

    Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

    How to use the dataset

    • Understanding the Dataset Structure:

      • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
      • Both files contain different columns that provide information about the COVID-19 cases and deaths.
      • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
    • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

    • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

    • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

    • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

    • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

    • Comparing Countries/Regions: Compare COVID-19

    Research Ideas

    • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
  8. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  9. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  10. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  11. T

    Mexico - Death Rate, Crude

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Mexico - Death Rate, Crude [Dataset]. https://tradingeconomics.com/mexico/death-rate-crude-per-1-000-people-wb-data.html
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Mexico
    Description

    Death rate, crude (per 1,000 people) in Mexico was reported at 6.161 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Mexico - Death rate, crude - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.

  12. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  13. G

    Death rate by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 13, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Death rate by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Death_rate/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    Jan 13, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2022 based on 196 countries was 8.24 deaths per 1000 people. The highest value was in the Central African Republic: 55.13 deaths per 1000 people and the lowest value was in Qatar: 0.93 deaths per 1000 people. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  14. T

    United States Death Rate Crude Per 1 000 People

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States Death Rate Crude Per 1 000 People [Dataset]. https://tradingeconomics.com/united-states/death-rate-crude-per-1-000-people-wb-data.html
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    Actual value and historical data chart for United States Death Rate Crude Per 1 000 People

  15. Death rate by age and sex in the U.S. 2021

    • statista.com
    • akomarchitects.com
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Death rate by age and sex in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.

  16. I

    India Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh

    • ceicdata.com
    Updated Nov 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). India Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-death-rate-by-states/vital-statistics-death-rate-per-1000-population-uttar-pradesh
    Explore at:
    Dataset updated
    Nov 30, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh data was reported at 6.500 NA in 2020. This stayed constant from the previous number of 6.500 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh data is updated yearly, averaging 8.200 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 10.500 NA in 1999 and a record low of 6.500 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.

  17. World Statistics dataset from World Bank

    • kaggle.com
    zip
    Updated Nov 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr_statistics (2020). World Statistics dataset from World Bank [Dataset]. https://www.kaggle.com/datasets/mutindafestus/world-statistics-dataset-from-world-bank/code
    Explore at:
    zip(2862682 bytes)Available download formats
    Dataset updated
    Nov 22, 2020
    Authors
    Dr_statistics
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    This Data consists of some world statistics published by the World Bank since 1961

    Variables:

    1) Agriculture and Rural development - 42 indicators published on this website. https://data.worldbank.org/topic/agriculture-and-rural-development

    2) Access to electricity (% of the population) - Access to electricity is the percentage of the population with access to electricity. Electrification data are collected from industry, national surveys, and international sources.

    3) CPIA gender equality rating (1=low to 6=high) - Gender equality assesses the extent to which the country has installed institutions and programs to enforce laws and policies that promote equal access for men and women in education, health, the economy, and protection under law.

    4) Mineral rents (% of GDP) - Mineral rents are the difference between the value of production for a stock of minerals at world prices and their total costs of production. Minerals included in the calculation are tin, gold, lead, zinc, iron, copper, nickel, silver, bauxite, and phosphate.

    5) GDP per capita (current US$) - GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in current U.S. dollars.

    6) Literacy rate, adult total (% of people ages 15 and above)- Adult literacy rate is the percentage of people ages 15 and above who can both read and write with understanding a short simple statement about their everyday life.

    7) Net migration - Net migration is the net total of migrants during the period, that is, the total number of immigrants less the annual number of emigrants, including both citizens and noncitizens. Data are five-year estimates.

    8) Birth rate, crude (per 1,000 people) - Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.

    9) Death rate, crude (per 1,000 people) - Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.

    10) Mortality rate, infant (per 1,000 live births) - Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.

    11) Population, total - Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.

    Acknowledgements

    These datasets are publicly available for anyone to use under the following terms provided by the Dataset Source https://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Banner photo by https://population.un.org/wpp/Maps/

    Inspiration

    Subsaharan Africa and east Asia record high population total, actually Subsaharan Africa population bypassed Europe and central Asia population by 2010, has this been influenced by crop and food production, large arable land, high crude birth rates(influx), low mortality rates(exits from the population) or Net migration.

  18. Second World War: fatalities per country 1939-1945

    • statista.com
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Second World War: fatalities per country 1939-1945 [Dataset]. https://www.statista.com/statistics/1293510/second-world-war-fatalities-per-country/
    Explore at:
    Dataset updated
    Apr 4, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Estimates for the total death count of the Second World War generally range somewhere between 70 and 85 million people. The Soviet Union suffered the highest number of fatalities of any single nation, with estimates mostly falling between 22 and 27 million deaths. China then suffered the second greatest, at around 20 million, although these figures are less certain and often overlap with the Chinese Civil War. Over 80 percent of all deaths were of those from Allied countries, and the majority of these were civilians. In contrast, 15 to 20 percent were among the Axis powers, and the majority of these were military deaths, as shown in the death ratios of Germany and Japan. Civilian deaths and atrocities It is believed that 60 to 67 percent of all deaths were civilian fatalities, largely resulting from war-related famine or disease, and war crimes or atrocities. Systematic genocide, extermination campaigns, and forced labor, particularly by the Germans, Japanese, and Soviets, led to the deaths of millions. In this regard, Nazi activities alone resulted in 17 million deaths, including six million Jews in what is now known as The Holocaust. Not only was the scale of the conflict larger than any that had come before, but the nature of and reasoning behind this loss make the Second World War stand out as one of the most devastating and cruelest conflicts in history. Problems with these statistics Although the war is considered by many to be the defining event of the 20th century, exact figures for death tolls have proven impossible to determine, for a variety of reasons. Countries such as the U.S. have fairly consistent estimates due to preserved military records and comparatively few civilian casualties, although figures still vary by source. For most of Europe, records are less accurate. Border fluctuations and the upheaval of the interwar period mean that pre-war records were already poor or non-existent for many regions. The rapid and chaotic nature of the war then meant that deaths could not be accurately recorded at the time, and mass displacement or forced relocation resulted in the deaths of many civilians outside of their homeland, which makes country-specific figures more difficult to find. Early estimates of the war’s fatalities were also taken at face value and formed the basis of many historical works; these were often very inaccurate, but the validity of the source means that the figures continue to be cited today, despite contrary evidence.

    In comparison to Europe, estimate ranges are often greater across Asia, where populations were larger but pre-war data was in short supply. Many of the Asian countries with high death tolls were European colonies, and the actions of authorities in the metropoles, such as the diversion of resources from Asia to Europe, led to millions of deaths through famine and disease. Additionally, over one million African soldiers were drafted into Europe’s armies during the war, yet individual statistics are unavailable for most of these colonies or successor states (notably Algeria and Libya). Thousands of Asian and African military deaths went unrecorded or are included with European or Japanese figures, and there are no reliable figures for deaths of millions from countries across North Africa or East Asia. Additionally, many concentration camp records were destroyed, and such records in Africa and Asia were even sparser than in Europe. While the Second World War is one of the most studied academic topics of the past century, it is unlikely that we will ever have a clear number for the lives lost in the conflict.

  19. I

    India Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural

    • ceicdata.com
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). India Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-death-rate-by-states/vital-statistics-death-rate-per-1000-population-west-bengal-rural
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural data was reported at 5.300 NA in 2020. This records an increase from the previous number of 5.200 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural data is updated yearly, averaging 6.200 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 7.700 NA in 1998 and a record low of 5.200 NA in 2019. Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.

  20. Child and Infant Mortality

    • kaggle.com
    Updated Aug 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hrterhrter (2022). Child and Infant Mortality [Dataset]. https://www.kaggle.com/datasets/programmerrdai/child-and-infant-mortality
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 21, 2022
    Dataset provided by
    Kaggle
    Authors
    hrterhrter
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    One in every 100 children dies before completing one year of life. Around 68 percent of infant mortality is attributed to deaths of children before completing 1 month. 15,000 children die every day – Child mortality is an everyday tragedy of enormous scale that rarely makes the headlines Child mortality rates have declined in all world regions, but the world is not on track to reach the Sustainable Development Goal for child mortality Before the Modern Revolution child mortality was very high in all societies that we have knowledge of – a quarter of all children died in the first year of life, almost half died before reaching the end of puberty Over the last two centuries all countries in the world have made very rapid progress against child mortality. From 1800 to 1950 global mortality has halved from around 43% to 22.5%. Since 1950 the mortality rate has declined five-fold to 4.5% in 2015. All countries in the world have benefitted from this progress In the past it was very common for parents to see children die, because both, child mortality rates and fertility rates were very high. In Europe in the mid 18th century parents lost on average between 3 and 4 of their children Based on this overview we are asking where the world is today – where are children dying and what are they dying from?

    5.4 million children died in 2017 – Where did these children die? Pneumonia is the most common cause of death, preterm births and neonatal disorders is second, and diarrheal diseases are third – What are children today dying from? This is the basis for answering the question what can we do to make further progress against child mortality? We will extend this entry over the course of 2020.

    @article{owidchildmortality, author = {Max Roser, Hannah Ritchie and Bernadeta Dadonaite}, title = {Child and Infant Mortality}, journal = {Our World in Data}, year = {2013}, note = {https://ourworldindata.org/child-mortality} }

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county

Death Profiles by County

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24235858), csv(74497014), zip, csv(29775349)Available download formats
Dataset updated
Nov 26, 2025
Dataset authored and provided by
California Department of Public Health
Description

This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

Search
Clear search
Close search
Google apps
Main menu