Facebook
TwitterThis dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterThe leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City.
Report last ran: 09/24/2019
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterNumber and percentage of deaths, by month and place of residence, 1991 to most recent year.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Facebook
TwitterTHIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterThis dataset contains hourly pedestrian counts since 2009 from pedestrian sensor devices located across the city. The data is updated on a monthly basis and can be used to determine variations in pedestrian activity throughout the day.The sensor_id column can be used to merge the data with the Pedestrian Counting System - Sensor Locations dataset which details the location, status and directional readings of sensors. Any changes to sensor locations are important to consider when analysing and interpreting pedestrian counts over time.Importants notes about this dataset:• Where no pedestrians have passed underneath a sensor during an hour, a count of zero will be shown for the sensor for that hour.• Directional readings are not included, though we hope to make this available later in the year. Directional readings are provided in the Pedestrian Counting System – Past Hour (counts per minute) dataset.The Pedestrian Counting System helps to understand how people use different city locations at different times of day to better inform decision-making and plan for the future. A representation of pedestrian volume which compares each location on any given day and time can be found in our Online Visualisation.Related datasets:Pedestrian Counting System – Past Hour (counts per minute)Pedestrian Counting System - Sensor Locations
Facebook
TwitterNote: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (<a href="https://cdn.ymaws.com/www.cste.org/resource/resmgr/ps/positionstatement2020/Interim-20-ID-01_COVID
Facebook
TwitterCurrent issue 23/09/2020
Please note: Sensors 67, 68 and 69 are showing duplicate records. We are currently working on a fix to resolve this.
This dataset contains minute by minute directional pedestrian counts for the last hour from pedestrian sensor devices located across the city. The data is updated every 15 minutes and can be used to determine variations in pedestrian activity throughout the day.
The sensor_id column can be used to merge the data with the Sensor Locations dataset which details the location, status and directional readings of sensors. Any changes to sensor locations are important to consider when analysing and interpreting historical pedestrian counting data.
Note this dataset may not contain a reading for every sensor for every minute as sensor devices only create a record when one or more pedestrians have passed underneath the sensor.
The Pedestrian Counting System helps us to understand how people use different city locations at different times of day to better inform decision-making and plan for the future. A representation of pedestrian volume which compares each location on any given day and time can be found in our Online Visualisation.
Related datasets:
Pedestrian Counting System – 2009 to Present (counts per hour).
Pedestrian Counting System - Sensor Locations
Facebook
TwitterNumber of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterThe 24-Hour Log data can only be retained if the data is relevant to the Homeland Security mission and can be legally retained under Intelligence Oversight regulations. rnrnThe information entered into the log is dependent upon the content of the source report used to generate the log entry. The information for each incident varies depending upon the incident and circumstances surrounding the collection of information about the incident. rnrnInformation may be collected about the person who reported the incident and people involved in a reported incident, which may turn up varying levels of personal information, most often name and citizenship. Additional personal information may be collected and may include, but is not limited to, Social Security Number, passport or driver's license numbers or other identifying information; location of residency, names of associates, political or religious aff1hat1ons or membership m some group or organization, and other information deemed important by the reporting official.
Facebook
TwitterA. SUMMARY This dataset comes from the San Francisco Emergency Medical Services Agency and includes all opioid overdose-related 911 calls responded to by emergency medical services (ambulances). The purpose of this dataset is to show how many opioid overdose-related 911 calls the San Francisco Fire Department and other ambulance companies respond to each week. This dataset is based on ambulance patient care records and not 911 calls for service data. B. HOW THE DATASET IS CREATED The San Francisco Fire Department and other ambulance companies send electronic patient care reports to the California Emergency Medical Services Agency for all 911 calls they respond to. The San Francisco Emergency Medical Services Agency (SF EMSA) has access to the state database that includes all reports for 911 calls in San Francisco County. In order to identify overdose-related calls that resulted in an emergency medical service (or ambulance) response, SF EMSA filters the patient care reports based on set criteria used in other jurisdictions called The Rhode Island Criteria. These criteria filter calls to only include those calls where EMS documented that an opioid overdose was involved and/or naloxone (Narcan) was administered. Calls that do not involve an opioid overdose are filtered out of the dataset. Calls that result in a patient death on scene are also filtered out of the dataset. This dataset is created by copying the total number of calls each week when the state makes this data available. C. UPDATE PROCESS Data is generally available with a 24-hour lag on a weekly frequency but the exact lag and update frequency is based on when the State makes this data available. D. HOW TO USE THIS DATASET This dataset includes the total number of calls a week. The week starts on a Sunday and ends on the following Saturday. This dataset will not match the Fire Department Calls for Service dataset, as this dataset has been filtered to include only opioid overdose-related 911 calls based on electronic patient care report data. Additionally, the Fire Department Calls for Service data are primarily based on 911 call data (i.e. calls triaged and recorded by San Francisco’s 911 call center) and not the finalized electronic patient care reports recorded by Fire Department paramedics. E. RELATED DATASETS Fire Department Calls for Service San Francisco Department of Public Health Substance Use Services Unintentional Overdose Death Rates by Race/Ethnicity Preliminary Unintentional Drug Overdose Deaths F. CHANGE LOG 1/17/2024 - updated date/time fields from Coordinated Universal Time (UTC) to Pacific Time (PT) which caused a slight change in historic case counts by week.
Facebook
TwitterThis United States Environmental Protection Agency (US EPA) feature layer represents monitoring site data, updated hourly concentrations and Air Quality Index (AQI) values for the latest hour received from monitoring sites that report to AirNow.Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT
The issue of diagnosing psychotic diseases, including schizophrenia and bipolar disorder, in particular, the objectification of symptom severity assessment, is still a problem requiring the attention of researchers. Two measures that can be helpful in patient diagnosis are heart rate variability calculated based on electrocardiographic signal and accelerometer mobility data. The following dataset contains data from 30 psychiatric ward patients having schizophrenia or bipolar disorder and 30 healthy persons. The duration of the measurements for individuals was usually between 1.5 and 2 hours. R-R intervals necessary for heart rate variability calculation were collected simultaneously with accelerometer data using a wearable Polar H10 device. The Positive and Negative Syndrome Scale (PANSS) test was performed for each patient participating in the experiment, and its results were attached to the dataset. Furthermore, the code for loading and preprocessing data, as well as for statistical analysis, was included on the corresponding GitHub repository.
BACKGROUND
Heart rate variability (HRV), calculated based on electrocardiographic (ECG) recordings of R-R intervals stemming from the heart's electrical activity, may be used as a biomarker of mental illnesses, including schizophrenia and bipolar disorder (BD) [Benjamin et al]. The variations of R-R interval values correspond to the heart's autonomic regulation changes [Berntson et al, Stogios et al]. Moreover, the HRV measure reflects the activity of the sympathetic and parasympathetic parts of the autonomous nervous system (ANS) [Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, Matusik et al]. Patients with psychotic mental disorders show a tendency for a change in the centrally regulated ANS balance in the direction of less dynamic changes in the ANS activity in response to different environmental conditions [Stogios et al]. Larger sympathetic activity relative to the parasympathetic one leads to lower HRV, while, on the other hand, higher parasympathetic activity translates to higher HRV. This loss of dynamic response may be an indicator of mental health. Additional benefits may come from measuring the daily activity of patients using accelerometry. This may be used to register periods of physical activity and inactivity or withdrawal for further correlation with HRV values recorded at the same time.
EXPERIMENTS
In our experiment, the participants were 30 psychiatric ward patients with schizophrenia or BD and 30 healthy people. All measurements were performed using a Polar H10 wearable device. The sensor collects ECG recordings and accelerometer data and, additionally, prepares a detection of R wave peaks. Participants of the experiment had to wear the sensor for a given time. Basically, it was between 1.5 and 2 hours, but the shortest recording was 70 minutes. During this time, evaluated persons could perform any activity a few minutes after starting the measurement. Participants were encouraged to undertake physical activity and, more specifically, to take a walk. Due to patients being in the medical ward, they received instruction to take a walk in the corridors at the beginning of the experiment. They were to repeat the walk 30 minutes and 1 hour after the first walk. The subsequent walks were to be slightly longer (about 3, 5 and 7 minutes, respectively). We did not remind or supervise the command during the experiment, both in the treatment and the control group. Seven persons from the control group did not receive this order and their measurements correspond to freely selected activities with rest periods but at least three of them performed physical activities during this time. Nevertheless, at the start of the experiment, all participants were requested to rest in a sitting position for 5 minutes. Moreover, for each patient, the disease severity was assessed using the PANSS test and its scores are attached to the dataset.
The data from sensors were collected using Polar Sensor Logger application [Happonen]. Such extracted measurements were then preprocessed and analyzed using the code prepared by the authors of the experiment. It is publicly available on the GitHub repository [Książek et al].
Firstly, we performed a manual artifact detection to remove abnormal heartbeats due to non-sinus beats and technical issues of the device (e.g. temporary disconnections and inappropriate electrode readings). We also performed anomaly detection using Daubechies wavelet transform. Nevertheless, the dataset includes raw data, while a full code necessary to reproduce our anomaly detection approach is available in the repository. Optionally, it is also possible to perform cubic spline data interpolation. After that step, rolling windows of a particular size and time intervals between them are created. Then, a statistical analysis is prepared, e.g. mean HRV calculation using the RMSSD (Root Mean Square of Successive Differences) approach, measuring a relationship between mean HRV and PANSS scores, mobility coefficient calculation based on accelerometer data and verification of dependencies between HRV and mobility scores.
DATA DESCRIPTION
The structure of the dataset is as follows. One folder, called HRV_anonymized_data contains values of R-R intervals together with timestamps for each experiment participant. The data was properly anonymized, i.e. the day of the measurement was removed to prevent person identification. Files concerned with patients have the name treatment_X.csv, where X is the number of the person, while files related to the healthy controls are named control_Y.csv, where Y is the identification number of the person. Furthermore, for visualization purposes, an image of the raw RR intervals for each participant is presented. Its name is raw_RR_{control,treatment}_N.png, where N is the number of the person from the control/treatment group. The collected data are raw, i.e. before the anomaly removal. The code enabling reproducing the anomaly detection stage and removing suspicious heartbeats is publicly available in the repository [Książek et al]. The structure of consecutive files collecting R-R intervals is following:
Phone timestamp
RR-interval [ms]
12:43:26.538000
651
12:43:27.189000
632
12:43:27.821000
618
12:43:28.439000
621
12:43:29.060000
661
...
...
The first column contains the timestamp for which the distance between two consecutive R peaks was registered. The corresponding R-R interval is presented in the second column of the file and is expressed in milliseconds.
The second folder, called accelerometer_anonymized_data contains values of accelerometer data collected at the same time as R-R intervals. The naming convention is similar to that of the R-R interval data: treatment_X.csv and control_X.csv represent the data coming from the persons from the treatment and control group, respectively, while X is the identification number of the selected participant. The numbers are exactly the same as for R-R intervals. The structure of the files with accelerometer recordings is as follows:
Phone timestamp
X [mg]
Y [mg]
Z [mg]
13:00:17.196000
-961
-23
182
13:00:17.205000
-965
-21
181
13:00:17.215000
-966
-22
187
13:00:17.225000
-967
-26
193
13:00:17.235000
-965
-27
191
...
...
...
...
The first column contains a timestamp, while the next three columns correspond to the currently registered acceleration in three axes: X, Y and Z, in milli-g unit.
We also attached a file with the PANSS test scores (PANSS.csv) for all patients participating in the measurement. The structure of this file is as follows:
no_of_person
PANSS_P
PANSS_N
PANSS_G
PANSS_total
1
8
13
22
43
2
11
7
18
36
3
14
30
44
88
4
18
13
27
58
...
...
...
...
..
The first column contains the identification number of the patient, while the three following columns refer to the PANSS scores related to positive, negative and general symptoms, respectively.
USAGE NOTES
All the files necessary to run the HRV and/or accelerometer data analysis are available on the GitHub repository [Książek et al]. HRV data loading, preprocessing (i.e. anomaly detection and removal), as well as the calculation of mean HRV values in terms of the RMSSD, is performed in the main.py file. Also, Pearson's correlation coefficients between HRV values and PANSS scores and the statistical tests (Levene's and Mann-Whitney U tests) comparing the treatment and control groups are computed. By default, a sensitivity analysis is made, i.e. running the full pipeline for different settings of the window size for which the HRV is calculated and various time intervals between consecutive windows. Preparing the heatmaps of correlation coefficients and corresponding p-values can be done by running the utils_advanced_plots.py file after performing the sensitivity analysis. Furthermore, a detailed analysis for the one selected set of hyperparameters may be prepared (by setting sensitivity_analysis = False), i.e. for 15-minute window sizes, 1-minute time intervals between consecutive windows and without data interpolation method. Also, patients taking quetiapine may be excluded from further calculations by setting exclude_quetiapine = True because this medicine can have a strong impact on HRV [Hattori et al].
The accelerometer data processing may be performed using the utils_accelerometer.py file. In this case, accelerometer recordings are downsampled to ensure the same timestamps as for R-R intervals and, for each participant, the mobility coefficient is calculated. Then, a correlation
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Questions, answers and documents are stored in the dataset. Every question has an answer and the answer comes from a page of Rijksportaal Personnel (intranet central government). With this dataset a question-and-answer model can be trained. The computer thus learns to answer questions in the context of P-Direkt. A total of 322 questions were used that were once asked by e-mail to the contact center of P-Direkt. The questions are very general and never ask about personal circumstances. The aim of the dataset was to test whether question-and-answer models could possibly be used in a P-Direkt environment. The structure of the dataset corresponds to the Squad 2.0 dataset. ### Example: #### Question: Is it true that my SCV hours of 2020 expire if I don't take them? #### Answer: You can save your IKB hours in your IKB savings leave. IKB hours that you have not taken as leave and have not paid out will be added to your IKB savings leave at the end of December. Your IKB savings leave cannot expire #### Source*: You can save your IKB hours in your IKB savings leave. IKB hours that you have not taken as leave and have not paid out will be added to your IKB savings leave at the end of December. Your IKB savings leave cannot expire. You cannot have your IKB savings leave paid out. Payment is only made in the event of termination of employment or death. You can save up to 1800 hours. Do you work part-time or more than an average of 36 hours per week? In that case, the maximum number of hours to be saved is calculated proportionally and rounded down to whole hours. Any remaining holiday hours from 2015 and extra-statutory holiday hours that you had left over from 2016 up to and including 2019 will be converted into IKB hours on 1 January 2020 and these have been added to your IKB savings leave. * Please note, source is a snapshot of National Portal Personnel from April 2021. Go to National Portal Personnel on the intranet for up-to-date information about personnel matters.
Facebook
TwitterThis is NOT a raw population dataset. We use our proprietary stack to combine detailed 'WorldPop' UN-adjusted, sex and age structured population data with a spatiotemporal OD matrix.
The result is a dataset where each record indicates how many people can be reached in a fixed timeframe (1 Hour in this case) from that record's location.
The dataset is broken down into sex and age bands at 5 year intervals, e.g - male 25-29 (m_25) and also contains a set of features detailing the representative percentage of the total that the count represents.
The dataset provides 76174 records, one for each sampled location. These are labelled with a h3 index at resolution 7 - this allows easy plotting and filtering in Kepler.gl / Deck.gl / Mapbox, or easy conversion to a centroid (lat/lng) or the representative geometry of the hexagonal cell for integration with your geospatial applications and analyses.
A h3 resolution of 7, is a hexagonal cell area equivalent to: - ~1.9928 sq miles - ~5.1613 sq km
Higher resolutions or alternate geographies are available on request.
More information on the h3 system is available here: https://eng.uber.com/h3/
WorldPop data provides for a population count using a grid of 1 arc second intervals and is available for every geography.
More information on the WorldPop data is available here: https://www.worldpop.org/
One of the main use cases historically has been in prospecting for site selection, comparative analysis and network validation by asset investors and logistics companies. The data structure makes it very simple to filter out areas which do not meet requirements such as: - being able to access 70% of the German population within 4 hours by Truck and show only the areas which do exhibit this characteristic.
Clients often combine different datasets either for different timeframes of interest, or to understand different populations, such as that of the unemployed, or those with particular qualifications within areas reachable as a commute.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Egypt number dataset can be a great element for direct marketing nationwide right now. Also, this Egypt number dataset has thousands of active mobile numbers that help to increase sales in the company. Most importantly, you can develop your business by bringing many trustworthy B2C customers. Likewise, clients can send you a fast response whether they need it or not. Furthermore, this Egypt number dataset is a very essential tool for telemarketing. In other words, you get all these 95% valid leads at a very cheap price from us. Most importantly, our List To Data website still follows the full GDPR rules strictly. In addition, the return on investment (ROI) will give you satisfaction from the business. Egypt phone data is a very powerful contact database that you can get in your budget. Moreover, the Egypt phone data is very beneficial for fast business growth through direct marketing. In fact, our List To Data assures you that we give verified numbers at an affordable cost. As such, you can say that it brings you more profit than your expense. Additionally, the Egypt phone data has all the details like name, age, gender, location, and business. Anyway, people can connect with the largest group of consumers quickly through this. However, people can use these cell phone numbers without any worry. Thus, buy it from us as our experts are ready to present the most satisfactory service. Egypt phone number list is very helpful for any business and marketing. People can use this Egypt phone number list to develop their telemarketing. They can easily reach consumers through direct calls or SMS. In other words, we gather all the database and recheck it, so you should buy our packages right now. Furthermore, you can believe this correct directory to maximize your company’s growth rapidly. Also, we deliver the Egypt phone number list in an Excel and CSV file. Actually, the country’s mobile number library will help you in getting more profit than investment. Similarly, the List To Data expert team is ready to help you 24 hours with any necessary details that can help your business. Hence, buy this telemarketing lead at a very reasonable price to expand sales through B2C customers.
Facebook
TwitterThis dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.