100+ datasets found
  1. Road safety statistics: data tables

    • gov.uk
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2025). Road safety statistics: data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Transport
    Description

    These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.

    Latest data and table index

    The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.

    A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).

    All collision, casualty and vehicle tables

    https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)

    Historic trends (RAS01)

    RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)

    RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)

    Road user type (RAS02)

    RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)

    RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)

    RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)

    Road type (RAS03)

    RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)

    RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa

  2. Road Traffic Injuries

    • data.ca.gov
    • data.chhs.ca.gov
    • +3more
    pdf, xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Road Traffic Injuries [Dataset]. https://data.ca.gov/dataset/road-traffic-injuries
    Explore at:
    xlsx, pdf, zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

  3. Road traffic fatalities per one million inhabitants in the United States...

    • statista.com
    Updated Dec 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Road traffic fatalities per one million inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3708/road-accidents-in-the-us/
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.

  4. India Road accident Data-set

    • kaggle.com
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DATA125661 (2023). India Road accident Data-set [Dataset]. https://www.kaggle.com/datasets/data125661/india-road-accident-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    DATA125661
    Area covered
    India
    Description

    the Ministry of Road Transport and Highways of the Government of India releases annual reports on road accidents and casualties in the country. Additionally, many state governments also release data on road accidents within their jurisdiction. There are many potential causes of road accidents, including: Distracted driving (e.g. using a cell phone, eating, or applying makeup while driving) Impaired driving (e.g. driving under the influence of alcohol or drugs) Reckless or aggressive driving (e.g. speeding, tailgating, or running red lights) Fatigue or drowsy driving Poor road conditions (e.g. potholes, debris, or lack of proper signage) Vehicle defects or malfunctions Poor weather conditions (e.g. rain, snow, or fog) Inadequate infrastructure (e.g. lack of proper lighting, median barriers, or guardrails) Pedestrian or bicycle errors Wildlife crossing the road. There are several datasets available on road accidents, depending on the country and region. Here are a few examples:

    In the United States, the National Highway Traffic Safety Administration (NHTSA) provides data on vehicle crashes, including details such as the location, cause, and number of injuries and fatalities. The United Kingdom's Department for Transport provides data on reported road accidents, including information on the type of vehicle, number of casualties, and severity of injuries. The World Health Organization (WHO) also has a Global Status Report on Road Safety, which provides data on road accidents and fatalities for countries around the world. In India, the Ministry of Road Transport and Highways (MoRTH) provides annual data on road accidents and fatalities. The Global Road Safety Partnership (GRSP) also has a wealth of data on road accidents and fatalities, particularly in low- and middle-income countries. It is important to note that these datasets may have different data collection methodologies, and may not include all road accidents that have occurred.

  5. C

    Traffic Crashes - Vehicles

    • data.cityofchicago.org
    • s.cnmilf.com
    • +1more
    csv, xlsx, xml
    Updated Sep 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Traffic Crashes - Vehicles [Dataset]. https://data.cityofchicago.org/Transportation/Traffic-Crashes-Vehicles/68nd-jvt3
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 6, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This dataset contains information about vehicles (or units as they are identified in crash reports) involved in a traffic crash. This dataset should be used in conjunction with the traffic Crash and People dataset available in the portal. “Vehicle” information includes motor vehicle and non-motor vehicle modes of transportation, such as bicycles and pedestrians. Each mode of transportation involved in a crash is a “unit” and get one entry here. Each vehicle, each pedestrian, each motorcyclist, and each bicyclist is considered an independent unit that can have a trajectory separate from the other units. However, people inside a vehicle including the driver do not have a trajectory separate from the vehicle in which they are travelling and hence only the vehicle they are travelling in get any entry here. This type of identification of “units” is needed to determine how each movement affected the crash. Data for occupants who do not make up an independent unit, typically drivers and passengers, are available in the People table. Many of the fields are coded to denote the type and location of damage on the vehicle. Vehicle information can be linked back to Crash data using the “CRASH_RECORD_ID” field. Since this dataset is a combination of vehicles, pedestrians, and pedal cyclists not all columns are applicable to each record. Look at the Unit Type field to determine what additional data may be available for that record.

    The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here.

    Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.

  6. C

    Traffic Crashes - Vision Zero Chicago Traffic Fatalities

    • data.cityofchicago.org
    • catalog.data.gov
    Updated Aug 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Traffic Crashes - Vision Zero Chicago Traffic Fatalities [Dataset]. https://data.cityofchicago.org/Transportation/Traffic-Crashes-Vision-Zero-Chicago-Traffic-Fatali/gzaz-isa6
    Explore at:
    application/geo+json, xlsx, xml, kmz, kml, csvAvailable download formats
    Dataset updated
    Aug 25, 2025
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    Traffic fatalities within the City of Chicago that are included in Vision Zero Chicago (VZC) statistics. Vision Zero is Chicago’s commitment to eliminating fatalities and serious injuries from traffic crashes. The VZC Traffic Fatality List is compiled by the Chicago Department of Transportation (CDOT) after monthly reviews of fatal traffic crash information provided by Chicago Police Department’s Major Accident Investigation Unit (MAIU).

    CDOT uses a standardized process – sometimes differing from other sources and everyday use of the term -- to determine whether a death is a “traffic fatality.” Therefore, the traffic fatalities included in this list may differ from the fatal crashes reported in the full Traffic Crashes dataset (https://data.cityofchicago.org/d/85ca-t3if).

    Official traffic crash data are published by the Illinois Department of Transportation (IDOT) on an annual basis. This VZC Traffic Fatality List is updated monthly. Once IDOT publishes its crash data for a year, this dataset is edited to reflect IDOT’s findings.

    VZC Traffic Fatalities can be linked with other traffic crash datasets using the “Person_ID” field.

    State of Illinois considers a “traffic fatality” as any death caused by a traffic crash involving a motor vehicle, within 30 days of the crash. Fatalities that meet this definition are included in this VZC Traffic Fatality List unless excluded by any criteria below. There may be records in this dataset that do not appear as fatalities in the other datasets.

    The following criteria exclude a death from being considered a "traffic fatality," and are derived from Federal and State reporting standards.

    1. The Medical Examiner determined that the primary cause of the fatality was not the traffic crash, including:

    a. The fatality was reported as a suicide based on a police investigation.

    b. The fatality was reported as a homicide in which the "party at fault" intentionally inflicted serious bodily harm that caused the victim's death.

    c. The fatality was caused directly and exclusively by a medical condition or the fatality was not attributable to road user movement on a public roadway. (Note: If a person driving suffers a medical emergency and consequently hits and kills another road user, the other road user is included, although the driver suffering a medical emergency is excluded.)

    1. The crash did not occur within a trafficway.

    2. The crash involved a train or other such mode of transport within the rail dedicated right-of-way.

    3. The fatality was on a roadway not under Chicago Police Department jurisdiction, including:

    a. The fatality was occurred on an expressway. The City of Chicago does not have oversight on the expressway system. However, a fatality on expressway ramps occurring within the City jurisdiction will be counted in VZC Traffic Fatality List.

    b. The fatality occurred outside City limits. Crashes on streets along the City boundary may be assigned to another jurisdiction after the investigation if it is determined that the crash started or substantially occurred on the side of the street that is outside the City limits. Jurisdiction of streets along the City boundary are split between City and neighboring jurisdictions along the street centerline.

    1. The fatality is not a person (e.g., an animal).

    Change 12/7/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.

  7. Number of road accidents per one million inhabitants in the United States...

    • statista.com
    Updated Dec 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Number of road accidents per one million inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3708/road-accidents-in-the-us/
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.

  8. US Traffic Fatality Records

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Transportation (2019). US Traffic Fatality Records [Dataset]. https://www.kaggle.com/datasets/usdot/nhtsa-traffic-fatalities
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    Department of Transportation
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.

    FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.

    FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.

    NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.

    Content

    There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]. Fork this kernel to get started.

    Acknowledgements

    This dataset was provided by the National Highway Traffic Safety Administration.

  9. Fatality Analysis Reporting System ( FARS ) - Online Query Tool

    • data.virginia.gov
    • data.transportation.gov
    • +6more
    html
    Updated May 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2024). Fatality Analysis Reporting System ( FARS ) - Online Query Tool [Dataset]. https://data.virginia.gov/dataset/fatality-analysis-reporting-system-fars-online-query-tool
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 1, 2024
    Authors
    U.S Department of Transportation
    Description

    The program collects data for analysis of traffic safety crashes to identify problems, and evaluate countermeasures leading to reducing injuries and property damage resulting from motor vehicle crashes. The FARS dataset contains descriptions, in standard format, of each fatal crash reported. To qualify for inclusion, a crash must involve a motor vehicle traveling a traffic-way customarily open to the public and resulting in the death of a person (occupant of a vehicle or a non-motorist) within 30 days of the crash. Each crash has more than 100 coded data elements that characterize the crash, the vehicles, and the people involved. The specific data elements may be changed slightly each year to conform to the changing user needs, vehicle characteristics and highway safety emphasis areas. The type of information that FARS, a major application, processes is therefore motor vehicle crash data.

  10. C

    Traffic Crashes - People

    • data.cityofchicago.org
    • catalog.data.gov
    csv, xlsx, xml
    Updated Sep 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Traffic Crashes - People [Dataset]. https://data.cityofchicago.org/w/u6pd-qa9d/3q3f-6823?cur=E43fG0-Cf5h
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 6, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table.

    The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here.

    Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.

  11. T

    Vital Signs: Fatalities From Crashes By County (2022) DRAFT

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Fatalities From Crashes By County (2022) DRAFT [Dataset]. https://data.bayareametro.gov/Environment/Vital-Signs-Fatalities-From-Crashes-By-County-2022/3gpm-7dtb
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Oct 27, 2022
    Description

    VITAL SIGNS INDICATOR
    Fatalities From Crashes (EN4)

    FULL MEASURE NAME
    Fatalities from Crashes (traffic collisions)

    LAST UPDATED
    October 2022

    DESCRIPTION
    Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.

    DATA SOURCE
    National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
    1990-2020

    Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
    Annual Vehicle Miles Traveled (VMT)
    2001-2020

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    1990-2020

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    1990-2020

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.

    The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.

    For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.

  12. National Collision Database

    • open.canada.ca
    • data.amerigeoss.org
    • +1more
    csv, pdf, xlsx
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transport Canada (2025). National Collision Database [Dataset]. https://open.canada.ca/data/en/dataset/1eb9eba7-71d1-4b30-9fb1-30cbdab7e63a
    Explore at:
    xlsx, csv, pdfAvailable download formats
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    Transport Canadahttp://www.tc.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1999 - Dec 31, 2017
    Description

    National Collision Database (NCDB) – a database containing all police-reported motor vehicle collisions on public roads in Canada. Selected variables (data elements) relating to fatal and injury collisions for the collisions from 1999 to the most recent available data.

  13. d

    Motor Vehicle Collisions - Person

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Aug 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Motor Vehicle Collisions - Person [Dataset]. https://catalog.data.gov/dataset/motor-vehicle-collisions-person
    Explore at:
    Dataset updated
    Aug 30, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.

  14. d

    Data from: Traffic Crashes

    • data.detroitmi.gov
    • detroitdata.org
    • +1more
    Updated Mar 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2019). Traffic Crashes [Dataset]. https://data.detroitmi.gov/maps/d837b05bdd9643698be30dfedbab0272
    Explore at:
    Dataset updated
    Mar 22, 2019
    Dataset authored and provided by
    City of Detroit
    Area covered
    Description

    The State of Michigan’s criteria for a crash is a motor vehicle that was in transport and on the roadway, that resulted in death, injury, or property damage of $1,000 or more. Traffic crashes in this dataset are derived from SEMCOG’s Open Data Portal. Each row in the dataset represents a traffic crash that includes data about when and where the crash occurred, road conditions, number of individuals involved in the crash, and various factors that apply to the crash (Train, Bus, Deer, etc.). Also included is the number of injuries and fatalities that are associated with the crash.

  15. u

    Data from: DATABASE FOR THE ANALYSIS OF ROAD ACCIDENTS IN EUROPE

    • produccioncientifica.ugr.es
    • data.niaid.nih.gov
    • +1more
    Updated 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Navarro-Moreno, José; De Oña, Juan; Calvo-Poyo, Francisco; Navarro-Moreno, José; De Oña, Juan; Calvo-Poyo, Francisco (2022). DATABASE FOR THE ANALYSIS OF ROAD ACCIDENTS IN EUROPE [Dataset]. https://produccioncientifica.ugr.es/documentos/668fc484b9e7c03b01bdfcfc
    Explore at:
    Dataset updated
    2022
    Authors
    Navarro-Moreno, José; De Oña, Juan; Calvo-Poyo, Francisco; Navarro-Moreno, José; De Oña, Juan; Calvo-Poyo, Francisco
    Area covered
    Europe
    Description

    This database that can be used for macro-level analysis of road accidents on interurban roads in Europe. Through the variables it contains, road accidents can be explained using variables related to economic resources invested in roads, traffic, road network, socioeconomic characteristics, legislative measures and meteorology. This repository contains the data used for the analysis carried out in the papers: 1. Calvo-Poyo F., Navarro-Moreno J., de Oña J. (2020) Road Investment and Traffic Safety: An International Study. Sustainability 12:6332. https://doi.org/10.3390/su12166332 2. Navarro-Moreno J., Calvo-Poyo F., de Oña J. (2022) Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Int J Sustain Transp 1–11. https://doi.org/10.1080/15568318.2022.2082344 3. Navarro-Moreno, J., Calvo-Poyo, F., de Oña, J. (2022) Investment in roads and traffic safety: linked to economic development? A European comparison. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-22567 The file with the database is available in excel. DATA SOURCES The database presents data from 1998 up to 2016 from 20 european countries: Austria, Belgium, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom. Crash data were obtained from the United Nations Economic Commission for Europe (UNECE) [2], which offers enough level of disaggregation between crashes occurring inside versus outside built-up areas. With reference to the data on economic resources invested in roadways, deserving mention –given its extensive coverage—is the database of the Organisation for Economic Cooperation and Development (OECD), managed by the International Transport Forum (ITF) [1], which collects data on investment in the construction of roads and expenditure on their maintenance, following the definitions of the United Nations System of National Accounts (2008 SNA). Despite some data gaps, the time series present consistency from one country to the next. Moreover, to confirm the consistency and complete missing data, diverse additional sources, mainly the national Transport Ministries of the respective countries were consulted. All the monetary values were converted to constant prices in 2015 using the OECD price index. To obtain the rest of the variables in the database, as well as to ensure consistency in the time series and complete missing data, the following national and international sources were consulted: Eurostat [3] Directorate-General for Mobility and Transport (DG MOVE). European Union [4] The World Bank [5] World Health Organization (WHO) [6] European Transport Safety Council (ETSC) [7] European Road Safety Observatory (ERSO) [8] European Climatic Energy Mixes (ECEM) of the Copernicus Climate Change [9] EU BestPoint-Project [10] Ministerstvo dopravy, República Checa [11] Bundesministerium für Verkehr und digitale Infrastruktur, Alemania [12] Ministerie van Infrastructuur en Waterstaat, Países Bajos [13] National Statistics Office, Malta [14] Ministério da Economia e Transição Digital, Portugal [15] Ministerio de Fomento, España [16] Trafikverket, Suecia [17] Ministère de l’environnement de l’énergie et de la mer, Francia [18] Ministero delle Infrastrutture e dei Trasporti, Italia [19–25] Statistisk sentralbyrå, Noruega [26-29] Instituto Nacional de Estatística, Portugal [30] Infraestruturas de Portugal S.A., Portugal [31–35] Road Safety Authority (RSA), Ireland [36] DATA BASE DESCRIPTION The database was made trying to combine the longest possible time period with the maximum number of countries with complete dataset (some countries like Lithuania, Luxemburg, Malta and Norway were eliminated from the definitive dataset owing to a lack of data or breaks in the time series of records). Taking into account the above, the definitive database is made up of 19 variables, and contains data from 20 countries during the period between 1998 and 2016. Table 1 shows the coding of the variables, as well as their definition and unit of measure. Table. Database metadata Code Variable and unit fatal_pc_km Fatalities per billion passenger-km fatal_mIn Fatalities per million inhabitants accid_adj_pc_km Accidents per billion passenger-km p_km Billions of passenger-km croad_inv_km Investment in roads construction per kilometer, €/km (2015 constant prices) croad_maint_km Expenditure on roads maintenance per kilometer €/km (2015 constant prices) prop_motorwa Proportion of motorways over the total road network (%) populat Population, in millions of inhabitants unemploy Unemployment rate (%) petro_car Consumption of gasolina and petrol derivatives (tons), per tourism alcohol Alcohol consumption, in liters per capita (age > 15) mot_index Motorization index, in cars per 1,000 inhabitants den_populat Population density, inhabitants/km2 cgdp Gross Domestic Product (GDP), in € (2015 constant prices) cgdp_cap GDP per capita, in € (2015 constant prices) precipit Average depth of rain water during a year (mm) prop_elder Proportion of people over 65 years (%) dps Demerit Point System, dummy variable (0: no; 1: yes) freight Freight transport, in billions of ton-km ACKNOWLEDGEMENTS This database was carried out in the framework of the project “Inversión en carreteras y seguridad vial: un análisis internacional (INCASE)”, financed by: FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/Proyecto RTI2018-101770-B-I00, within Spain´s National Program of R+D+i Oriented to Societal Challenges. Moreover, the authors would like to express their gratitude to the Ministry of Transport, Mobility and Urban Agenda of Spain (MITMA), and the Federal Ministry of Transport and Digital Infrastructure of Germany (BMVI) for providing data for this study. REFERENCES 1. International Transport Forum OECD iLibrary | Transport infrastructure investment and maintenance. 2. United Nations Economic Commission for Europe UNECE Statistical Database Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS/?rxid=18ad5d0d-bd5e-476f-ab7c-40545e802eeb (accessed on Apr 28, 2020). 3. European Commission Database - Eurostat Available online: https://ec.europa.eu/eurostat/data/database (accessed on Apr 28, 2021). 4. Directorate-General for Mobility and Transport. European Commission EU Transport in figures - Statistical Pocketbooks Available online: https://ec.europa.eu/transport/facts-fundings/statistics_en (accessed on Apr 28, 2021). 5. World Bank Group World Bank Open Data | Data Available online: https://data.worldbank.org/ (accessed on Apr 30, 2021). 6. World Health Organization (WHO) WHO Global Information System on Alcohol and Health Available online: https://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed on Apr 29, 2021). 7. European Transport Safety Council (ETSC) Traffic Law Enforcement across the EU - Tackling the Three Main Killers on Europe’s Roads; Brussels, Belgium, 2011; 8. Copernicus Climate Change Service Climate data for the European energy sector from 1979 to 2016 derived from ERA-Interim Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-european-energy-sector?tab=overview (accessed on Apr 29, 2021). 9. Klipp, S.; Eichel, K.; Billard, A.; Chalika, E.; Loranc, M.D.; Farrugia, B.; Jost, G.; Møller, M.; Munnelly, M.; Kallberg, V.P.; et al. European Demerit Point Systems : Overview of their main features and expert opinions. EU BestPoint-Project 2011, 1–237. 10. Ministerstvo dopravy Serie: Ročenka dopravy; Ročenka dopravy; Centrum dopravního výzkumu: Prague, Czech Republic; 11. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2003/2004; Hamburg, Germany, 2004; ISBN 3871542946. 12. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2018/2019. In Verkehrsdynamik; Flensburg, Germany, 2018 ISBN 9783000612947. 13. Ministerie van Infrastructuur en Waterstaat Rijksjaarverslag 2018 a Infrastructuurfonds; The Hague, Netherlands, 2019; ISBN 0921-7371. 14. Ministerie van Infrastructuur en Milieu Rijksjaarverslag 2014 a Infrastructuurfonds; The Hague, Netherlands, 2015; ISBN 0921- 7371. 15. Ministério da Economia e Transição Digital Base de Dados de Infraestruturas - GEE Available online: https://www.gee.gov.pt/pt/publicacoes/indicadores-e-estatisticas/base-de-dados-de-infraestruturas (accessed on Apr 29, 2021). 16. Ministerio de Fomento. Dirección General de Programación Económica y Presupuestos. Subdirección General de Estudios Económicos y Estadísticas Serie: Anuario estadístico; NIPO 161-13-171-0; Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento: Madrid, Spain; 17. Trafikverket The Swedish Transport Administration Annual report: 2017; 2018; ISBN 978-91-7725-272-6. 18. Ministère de l’Équipement, du T. et de la M. Mémento de statistiques des transports 2003; Ministère de l’environnement de l’énergie et de la mer, 2005; 19. Ministero delle Infrastrutture e dei Trasporti Conto Nazionale delle Infrastrutture e dei Trasporti Anno 2000; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2001; 20. Ministero delle Infrastrutture e dei Trasporti Conto nazionale dei trasporti 1999. 2000. 21. Generale, D.; Informativi, S. delle Infrastrutture e dei Trasporti Anno 2004. 22. Ministero delle Infrastrutture e dei Trasporti Conto Nazionale delle Infrastrutture e dei Trasporti Anno 2001; 2002; 23. Ministero delle Infrastrutture e dei

  16. R

    Accident Detection Model Dataset

    • universe.roboflow.com
    zip
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accident detection model (2024). Accident Detection Model Dataset [Dataset]. https://universe.roboflow.com/accident-detection-model/accident-detection-model/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    Accident detection model
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Accident Bounding Boxes
    Description

    Accident-Detection-Model

    Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.

    Problem Statement

    • Road accidents are a major problem in India, with thousands of people losing their lives and many more suffering serious injuries every year.
    • According to the Ministry of Road Transport and Highways, India witnessed around 4.5 lakh road accidents in 2019, which resulted in the deaths of more than 1.5 lakh people.
    • The age range that is most severely hit by road accidents is 18 to 45 years old, which accounts for almost 67 percent of all accidental deaths.

    Accidents survey

    https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">

    Literature Survey

    • Sreyan Ghosh in Mar-2019, The goal is to develop a system using deep learning convolutional neural network that has been trained to identify video frames as accident or non-accident.
    • Deeksha Gour Sep-2019, uses computer vision technology, neural networks, deep learning, and various approaches and algorithms to detect objects.

    Research Gap

    • Lack of real-world data - We trained model for more then 3200 images.
    • Large interpretability time and space needed - Using google collab to reduce interpretability time and space required.
    • Outdated Versions of previous works - We aer using Latest version of Yolo v8.

    Proposed methodology

    • We are using Yolov8 to train our custom dataset which has been 3200+ images, collected from different platforms.
    • This model after training with 25 iterations and is ready to detect an accident with a significant probability.

    Model Set-up

    Preparing Custom dataset

    • We have collected 1200+ images from different sources like YouTube, Google images, Kaggle.com etc.
    • Then we annotated all of them individually on a tool called roboflow.
    • During Annotation we marked the images with no accident as NULL and we drew a box on the site of accident on the images having an accident
    • Then we divided the data set into train, val, test in the ratio of 8:1:1
    • At the final step we downloaded the dataset in yolov8 format.
      #### Using Google Collab
    • We are using google colaboratory to code this model because google collab uses gpu which is faster than local environments.
    • You can use Jupyter notebooks, which let you blend code, text, and visualisations in a single document, to write and run Python code using Google Colab.
    • Users can run individual code cells in Jupyter Notebooks and quickly view the results, which is helpful for experimenting and debugging. Additionally, they enable the development of visualisations that make use of well-known frameworks like Matplotlib, Seaborn, and Plotly.
    • In Google collab, First of all we Changed runtime from TPU to GPU.
    • We cross checked it by running command ‘!nvidia-smi’
      #### Coding
    • First of all, We installed Yolov8 by the command ‘!pip install ultralytics==8.0.20’
    • Further we checked about Yolov8 by the command ‘from ultralytics import YOLO from IPython.display import display, Image’
    • Then we connected and mounted our google drive account by the code ‘from google.colab import drive drive.mount('/content/drive')’
    • Then we ran our main command to run the training process ‘%cd /content/drive/MyDrive/Accident Detection model !yolo task=detect mode=train model=yolov8s.pt data= data.yaml epochs=1 imgsz=640 plots=True’
    • After the training we ran command to test and validate our model ‘!yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data.yaml’ ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt conf=0.25 source=data/test/images’
    • Further to get result from any video or image we ran this command ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source="/content/drive/MyDrive/Accident-Detection-model/data/testing1.jpg/mp4"’
    • The results are stored in the runs/detect/predict folder.
      Hence our model is trained, validated and tested to be able to detect accidents on any video or image.

    Challenges I ran into

    I majorly ran into 3 problems while making this model

    • I got difficulty while saving the results in a folder, as yolov8 is latest version so it is still underdevelopment. so i then read some blogs, referred to stackoverflow then i got to know that we need to writ an extra command in new v8 that ''save=true'' This made me save my results in a folder.
    • I was facing problem on cvat website because i was not sure what
  17. Road Traffic Accident Casualties, Annual

    • data.gov.sg
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Singapore Department of Statistics (2025). Road Traffic Accident Casualties, Annual [Dataset]. https://data.gov.sg/datasets/d_78ba40f0eed52ff007bccb81ee6372ed/view
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Singapore Department of Statistics
    License

    https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence

    Time period covered
    Jan 1981 - Dec 2024
    Description

    Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_78ba40f0eed52ff007bccb81ee6372ed/view

  18. N

    2021 traffic deaths involving pedestrians and cyclists

    • data.cityofnewyork.us
    application/rdfxml +5
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Police Department (NYPD) (2025). 2021 traffic deaths involving pedestrians and cyclists [Dataset]. https://data.cityofnewyork.us/Public-Safety/2021-traffic-deaths-involving-pedestrians-and-cycl/u7dk-udsr
    Explore at:
    application/rssxml, csv, tsv, xml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Sep 1, 2025
    Authors
    Police Department (NYPD)
    Description

    This is a subset of a larger dataset. This dataset includes pedestrians and cyclists killed in traffic collisions in 2021.

    The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system.

    The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.

    Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.

  19. e

    Annual Road Traffic Injury Databases - Years 2005 to 2023

    • data.europa.eu
    • europeandataportal.eu
    csv, pdf, unknown
    Updated Dec 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministère de l'intérieur (2023). Annual Road Traffic Injury Databases - Years 2005 to 2023 [Dataset]. https://data.europa.eu/data/datasets/53698f4ca3a729239d2036df
    Explore at:
    csv(6202316), csv(5572527), csv(3691553), csv(4356280), csv(30568607), csv(6431828), csv(6366720), csv(5254620), csv(4212181), csv(3657421), csv(4073810), csv(9505797), csv(966375), csv(4929485), csv(9224640), csv(3089397), csv(5747210), csv(5682910), csv(4477777), csv(3051759), csv(7180190), csv(10077036), csv(6884406), csv(4997218), csv(3830940), csv(3117862), csv(3498239), csv(3771018), csv(5848272), csv(4225215), csv, csv(7747432), csv(13013255), csv(8292242), csv(7682470), csv(6943989), pdf(451654), csv(5771984), csv(5384167), csv(6998722), csv(5655584), csv(4800826), csv(5800528), pdf(86850), csv(5273810), csv(3143147), csv(7905992), csv(7853454), csv(8065541), csv(6921630), csv(4638375), pdf(897872), csv(4740559), csv(6591826), unknown, csv(2781213), csv(7766182), csv(12454879), csv(4674035), csv(3645616), csv(5332863), csv(4355745), csv(4521088), csv(5541321), csv(8131673), csv(4848829), csv(7176266), csv(7914032), csv(4792491), csv(6021965), csv(3914820), csv(5492931), csv(5530581), csv(3764942), csv(4697969), csv(8592598), csv(4334201), csv(6215367), csv(4851687), csv(4557000), csv(5617313), csv(13938227), csv(13028412), csv(7211817), pdf(109757), pdf(55556), csv(7045926), csv(5943766), csv(5447072), csv(6452803), csv(3237879), csv(3659996), csv(5390071), csv(7876901), csv(5744935), csv(4369670), csv(3038635), csv(10054646), csv(5265153)Available download formats
    Dataset updated
    Dec 31, 2023
    Dataset authored and provided by
    Ministère de l'intérieur
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    For each personal injury accident (i.e. an accident on a road open to public traffic, involving at least one vehicle and involving at least one victim requiring treatment), information describing the accident is seized by the police unit (police, gendarmerie, etc.) which intervened at the scene of the accident. These seizures are collected in a sheet entitled ‘Injury Analysis Bulletin’. All these forms constitute the national register of road traffic injuries, known as the ‘BAAC file’, administered by the National Interministerial Observatory for Road Safety (ONISR).

    The databases, extracted from the BAAC file, list all road traffic injuries occurring during a specific year in mainland France, in the overseas departments (Guadeloupe, French Guiana, Martinique, Réunion and Mayotte since 2012) and in the other overseas territories (Saint-Pierre-et-Miquelon, Saint-Barthélemy, Saint-Martin, Wallis and Futuna, French Polynesia and New Caledonia; available only from 2019 in open data) with a simplified description. This includes information on the location of the accident, as provided, as well as information on the characteristics of the accident and its location, the vehicles involved and their victims.

    Compared to the aggregated databases 2005-2010 and 2006-2011 currently available on the website www.data.gouv.fr, the databases from 2005 to 2023 are now annual and composed of 4 files (Characteristics – Locations – Vehicles – Users) in csv format.

    However, those databases conceal certain specific data relating to users and vehicles and their conduct in so far as disclosure of that data would undermine the protection of the privacy of easily identifiable natural persons or reveal the conduct of such persons, whereas disclosure of that conduct could be detrimental to them (CADA opinion – 2 January 2012).

    Warning: Data on the classification of injured persons hospitalised since 2018 cannot be compared to previous years following changes in the seizure process of the police. The indicator ‘injured hospitalised’ has no longer been labelled by the public statistics authority since 2019.

    The validity of the statistical operations that can be made from this database depends on the verification methods specific to the field of application of road safety and in particular on a precise knowledge of the definitions relating to each variable used. For any operation, it is important to take note in particular of the structure of the attached BAAC sheet and the guide to using the codification of the road traffic accident analysis bulletin.

    It should be noted that a number of indicators from this database are labelled by the public statistics authority (Order of 27 November 2019). The list is available at: https://www.onisr.securite-routiere.gouv.fr/statistical tools/labelled indicators

  20. Road Safety Data - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Sep 20, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2011). Road Safety Data - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/road-accidents-safety-data
    Explore at:
    Dataset updated
    Sep 20, 2011
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Road Safety Statistics releases and guidance about the data collection. Collision analysis tool for bespoke breakdowns of our data. STATS19 R package developed independently of DfT, offering an alternative way to access this data for those familiar with the R language. Latest data Provisional data for the first 6 months of 2024 published 28 November 2024. These are provisional un-validated data. Data included These files provide detailed road safety data about the circumstances of personal injury road collisions in Great Britain from 1979, the types of vehicles involved and the consequential casualties. The statistics relate only to personal injury collisions on public roads that are reported to the police, and subsequently recorded, using the STATS19 collision reporting form. This data contains all the non-sensitive fields that can be made public. Sensitive data fields, for example contributory factors data, can be requested by completing the sensitive data form and contacting the road safety statistics team at roadacc.stats@dft.gov.uk All the data variables are coded rather than containing textual strings. The lookup tables are available in the supporting documents section towards the bottom of the table. Data relating to the casualty and collision severity adjustment to account for changes in police reporting of severity is provided in separate files and can be joined using the appropriate record identifiers. Timing of data release Final annual data is released annually in late September following the publication of the annual reported road casualties Great Britain statistical publication. Individual years data is available for each of the last 5 years, with earlier years available as part of a single download. In addition, un-validated provisional mid-year data (covering January to June) is released at end November, to provide more up to date information Data revisions Except for the severity adjustments, data are not routinely revised those occasionally minor amendments to previous years can be made. Details of recent revisions are available, together with a request for any feedback on the approach to revising the data. The files published here represent the latest data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department for Transport (2025). Road safety statistics: data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
Organization logo

Road safety statistics: data tables

Explore at:
43 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 31, 2025
Dataset provided by
GOV.UKhttp://gov.uk/
Authors
Department for Transport
Description

These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.

Latest data and table index

The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.

A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).

All collision, casualty and vehicle tables

https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)

Historic trends (RAS01)

RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)

RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)

Road user type (RAS02)

RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)

RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)

RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)

Road type (RAS03)

RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)

RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa

Search
Clear search
Close search
Google apps
Main menu