33 datasets found
  1. Urban Heat Islands

    • hub.arcgis.com
    • opendata.rcmrd.org
    • +1more
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Urban Heat Islands [Dataset]. https://hub.arcgis.com/maps/UrbanObservatory::urban-heat-islands/about
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Description

    This scene contains the relative heat severity for every pixel for every city in the United States, from this source layer. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this scene is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.

  2. r

    LSAT Surface Temp Distribution in Philadelphia - copy

    • opendata.rcmrd.org
    Updated Dec 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colgate University (2020). LSAT Surface Temp Distribution in Philadelphia - copy [Dataset]. https://opendata.rcmrd.org/datasets/ceed58e74bfa4d949dc79cabe2b27ab5
    Explore at:
    Dataset updated
    Dec 9, 2020
    Dataset authored and provided by
    Colgate University
    Area covered
    Description

    This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: http://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.

  3. m

    Climate Ready Boston Social Vulnerability

    • gis.data.mass.gov
    • data.boston.gov
    • +3more
    Updated Sep 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BostonMaps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://gis.data.mass.gov/datasets/boston::climate-ready-boston-social-vulnerability
    Explore at:
    Dataset updated
    Sep 22, 2017
    Dataset authored and provided by
    BostonMaps
    Area covered
    Description

    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood

  4. Climate.gov Data Snapshots: Temperature - US Monthly, Difference from...

    • datalumos.org
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - US Monthly, Difference from Average [Dataset]. http://doi.org/10.3886/E233741V1
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: Was the month cooler or warmer than usual? A: Colors show where and by how much the monthly average temperature differed from the month’s long-term average temperature from 1991-2020. Red areas were warmer than the 30-year average for the month, and blue areas were cooler. White and very light areas had temperatures close to the long-term average. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). To calculate the difference-from-average temperatures shown on these maps—also called temperature anomalies—NCEI scientists take the average temperature in each 5x5 km grid box for a single month and year, and subtract its 1991-2020 average for the same month. If the result is a positive number, the region was warmer than average. A negative result means the region was cooler than usual. Q: What do the colors mean? A: Shades of blue show places where average monthly temperatures were below their long-term average for the month. Areas shown in shades of pink to red had average temperatures that were warmer than usual. The darker the shade of red or blue, the larger the difference from the long-term average temperature. White and very light areas show where average monthly temperature was the same as or very close to the long-term average. Q: Why do these data matter? A: Comparing an area’s recent temperature to its long-term average can tell how warm or how cool the area is compared to usual. Temperature anomalies also give us a frame of reference to better compare locations. For example, two areas might have each had recent temperatures near 70°F, but 70°F could be above average for one location while below average for another. Knowing an area is much warmer or much cooler than usual can encourage people to pay close attention to on-the-ground conditions that affect daily life and decisions. People check maps like this to judge crop progress, estimate energy use, consider snow and lake ice melt; and to understand impacts on wildfire regimes. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Q: Data Format Description A: NetCDF (Version: 4) Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature NClimGrid Temperature Normals References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions NCEI Monthly National Analysis Cl

  5. Average annual temperature in the United States 1895-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  6. c

    Extreme Heat Watches and Warnings

    • resilience.climate.gov
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). Extreme Heat Watches and Warnings [Dataset]. https://resilience.climate.gov/maps/3cbc6d64e8f34c868da2aa16e8ced6df
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature service depicts the National Weather Service (NWS) watches, warnings, and advisories within the United States. Watches and warnings are classified into 43 categories.A warning is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. A warning means weather conditions pose a threat to life or property. People in the path of the storm need to take protective action.A watch is used when the risk of a hazardous weather or hydrologic event has increased significantly, but its occurrence, location or timing is still uncertain. It is intended to provide enough lead time so those who need to set their plans in motion can do so. A watch means that hazardous weather is possible. People should have a plan of action in case a storm threatens, and they should listen for later information and possible warnings especially when planning travel or outdoor activities.An advisory is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. Advisories are for less serious conditions than warnings, that cause significant inconvenience and if caution is not exercised, could lead to situations that may threaten life or property.SourceNational Weather Service RSS-CAP Warnings and Advisories: Public AlertsNational Weather Service Boundary Overlays: AWIPS Shapefile DatabaseSample DataSee Sample Layer Item for sample data during Weather inactivity!Update FrequencyThe services is updated every 5 minutes using the Aggregated Live Feeds methodology.The overlay data is checked and updated daily from the official AWIPS Shapefile Database.Area CoveredUnited States and TerritoriesWhat can you do with this layer?Customize the display of each attribute by using the Change Style option for any layer.Query the layer to display only specific types of weather watches and warnings.Add to a map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools, such as Enrich Data, to determine the potential impact of weather events on populations.

  7. Monthly average temperature in the United States 2020-2025

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2025 [Dataset]. https://www.statista.com/statistics/513644/monthly-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Apr 2025
    Area covered
    United States
    Description

    The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.

  8. Evening Air Temperature in Cities - Urban Heat Islands

    • heat.gov
    • giscommons-countyplanning.opendata.arcgis.com
    • +2more
    Updated Nov 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2021). Evening Air Temperature in Cities - Urban Heat Islands [Dataset]. https://www.heat.gov/datasets/4653db8862ab4230acdf618903fd28c5
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: air temperatureUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Morning Air Temperature and Afternoon Air Temperature. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Evening Air Temperature Observations in Floating-Point (°F)

  9. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/berkeleyearth/climate-change-earth-suRFace-temperature-data/kernels
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  10. Data from: Current inequality and future potential of US urban tree cover...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert McDonald (2024). Current inequality and future potential of US urban tree cover for reducing heat-related health impacts [Dataset]. http://doi.org/10.5061/dryad.zgmsbcckf
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 26, 2024
    Dataset provided by
    The Nature Conservancy
    Authors
    Robert McDonald
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    United States
    Description

    Excessive heat is a major and growing risk for urban residents. Here, we estimate the inequality in summertime heat-related mortality, morbidity, and electricity consumption across 5,723 US municipalities and other places, housing 180 million people during the 2020 census. On average, trees in majority non-Hispanic white neighborhoods cool the air by 0.19 ± 0.05⁰C more than in POC neighborhoods, leading annually to trees in white neighborhoods helping prevent 190 ± 139 more deaths, 30,131 ± 10,406 more doctors’ visits, and 1.4 ± 0.5 terawatt-hours (TWhr) more electricity consumption than in POC neighborhoods. We estimate that an ambitious reforestation program would require 1.2 billion trees and reduce population-weighted average summer temperatures by an additional 0.38 ± 0.01⁰C. This temperature reduction would reduce annual heat-related mortality by an additional 464 ± 89 people, annual heat-related morbidity by 80,785 ± 6110 cases, and annual electricity consumption by 4.3 ± 0.2 TWhr, while increasing annual carbon sequestration in trees by 23.7 ± 1.2 MtCO2e yr-1 and decreasing annual electricity-related GHG emissions by 2.1 ± 0.2 MtCO2e yr-1. The total economic value of these benefits, including the value of carbon sequestration and avoided emissions, would be USD 9.6 ± 0.5 billion, although in many neighborhoods the cost of planting and maintaining trees to achieve this increased tree cover would exceeds these benefits. The exception is areas that currently have less tree cover, often majority POC, which tend to have a relatively high return-on-investment from tree planting. Methods Our analysis proceeded in four phases. First, we assembled spatial data from multiple sources and compiled them to a common analysis unit. Second, we developed an algorithm that would set a plausible ambitious reforestation target, given other land-use constraints. Third, we estimated the heat mitigation-related benefits of current tree canopy and of future planting scenarios, up to the ambitious planting scenario. Benefits evaluated were avoided mortality, avoided morbidity, avoided electricity consumption, avoided release of greenhouse gases from avoided electricity consumption, and carbon sequestration in aboveground tree biomass. Fourth, we valued these benefits in monetary terms. See McDonald et al. 2024 in npj Urban Sustainability for Details.

  11. Monthly average temperature in the United States 2020-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  12. f

    The use of an ‘acclimatisation’ heatwave measure to compare...

    • plos.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Naomi van der Linden; Thomas Longden; John R. Richards; Munawar Khursheed; Wilhelmina M. T. Goddijn; Michiel J. van Veelen; Uzma Rahim Khan; M. Christien van der Linden (2023). The use of an ‘acclimatisation’ heatwave measure to compare temperature-related demand for emergency services in Australia, Botswana, Netherlands, Pakistan, and USA [Dataset]. http://doi.org/10.1371/journal.pone.0214242
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Naomi van der Linden; Thomas Longden; John R. Richards; Munawar Khursheed; Wilhelmina M. T. Goddijn; Michiel J. van Veelen; Uzma Rahim Khan; M. Christien van der Linden
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Netherlands, Australia, Pakistan, Botswana, United States
    Description

    BackgroundHeatwaves have been linked to increased risk of mortality and morbidity and are projected to increase in frequency and intensity due to climate change. The current study uses emergency department (ED) data from Australia, Botswana, Netherlands, Pakistan, and the United States of America to evaluate the impact of heatwaves on ED attendances, admissions and mortality.MethodsRoutinely collected time series data were obtained from 18 hospitals. Two separate thresholds (≥4 and ≥7) of the acclimatisation excess heat index (EHIaccl) were used to define “hot days”. Analyses included descriptive statistics, independent samples T-tests to determine differences in case mix between hot days and other days, and threshold regression to determine which temperature thresholds correspond to large increases in ED attendances.FindingsIn all regions, increases in temperature that did not coincide with time to acclimatise resulted in increases in ED attendances, and the EHIaccl performed in a similar manner. During hot days in California and The Netherlands, significantly more children ended up in the ED, while in Pakistan more elderly people attended. Hot days were associated with more patient admissions in the ages 5–11 in California, 65–74 in Karachi, and 75–84 in The Hague. During hot days in The Hague, patients with psychiatric symptoms were more likely to die. The current study did not identify a threshold temperature associated with particularly large increases in ED demand.InterpretationThe association between heat and ED demand differs between regions. A limitation of the current study is that it does not consider delayed effects or influences of other environmental factors. Given the association between heat and ED use, hospitals and governmental authorities should recognise the demands that heat can place on local health care systems. These demands differ substantially between regions, with Pakistan being the most heavily affected within our study sample.

  13. d

    Data from: Dynamically Downscaled Hourly Future Weather Data with 12-km...

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Argonne National Laboratory (2025). Dynamically Downscaled Hourly Future Weather Data with 12-km Resolution Covering Most of North America [Dataset]. https://catalog.data.gov/dataset/dynamically-downscaled-hourly-future-weather-data-with-12-km-resolution-covering-most-of-n
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset provided by
    Argonne National Laboratory
    Area covered
    North America
    Description

    This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4). This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth. This dataset provides future weather data under two emissions scenarios - RCP4.5 and RCP8.5 - across two 10-year periods (2045-2054 and 2085-2094). It also includes simulated historical weather data for 1995-2004 to serve as the baseline for climate impact assessments. We strongly recommend using this built-in baseline rather than external sources (e.g., TMY3) for two key reasons: (1) it shares the same model grid as the future projections, thereby minimizing geographic-averaging bias, and (2) both historical and future datasets were generated by the same RCM, so their differences yield anomalies largely free of residual model bias. This dataset offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale.

  14. Z

    Mapping environmental injustices within the U.S. prison system: a nationwide...

    • data.niaid.nih.gov
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caitlin Mothes (2023). Mapping environmental injustices within the U.S. prison system: a nationwide dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8306891
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    Devin Hunt
    Caitlin Mothes
    Carrie Chennault
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This open-access geospatial dataset (downloadable in csv or shapefile format) contains a total of 11 environmental indicators calculated for 1865 U.S. prisons. This consists of all active state- and federally-operated prisons according to the Homeland Infrastructure Foundation-Level Data (HIFLD), last updated June 2022. This dataset includes both raw values and percentiles for each indicator. Percentiles denote a way to rank prisons among each other, where the number represents the percentage of prisons that are equal to or have a lower ranking than that prison. Higher percentile values indicate higher vulnerability to that specific environmental burden compared to all the other prisons. Full descriptions of how each indicator was calculated and the datasets used can be found here: https://github.com/GeospatialCentroid/NASA-prison-EJ/blob/main/doc/indicator_metadata.md.

    From these raw indicator values and percentiles, we also developed three individual component scores to summarize similar indicators, and to then create a single vulnerability index (methods based on other EJ screening tools such as Colorado Enviroscreen, CalEnviroScreen and EPA’s EJ Screen). The three component scores include climate vulnerability, environmental exposures and environmental effects. Climate vulnerability factors reflect climate change risks that have been associated with health impacts and includes flood risk, wildfire risk, heat exposure and canopy cover indicators. Environmental exposures reflect variables of different types of pollution people may come into contact with (but not a real-time exposure to pollution) and includes ozone, particulate matter (PM 2.5), traffic proximity and pesticide use. Environmental effects indicators are based on the proximity of toxic chemical facilities and includes proximity to risk management plan (RMP) facilities, National Priority List (NPL)/Superfund facilities, and hazardous waste facilities. Component scores were calculated by taking the geometric mean of the indicator percentiles. Using the geometric mean was most appropriate for our dataset since many values may be related (e.g., canopy cover and temperature are known to be correlated).

    To calculate a final, standardized vulnerability score to compare overall environmental burdens at prisons across the U.S., we took the average of each component score and then converted those values to a percentile rank. While this index only compares environmental burdens among prisons and is not comparable to non-prison sites/communities, it will be able to heighten awareness of prisons most vulnerable to negative environmental impacts at county, state and national scales. As an open-access dataset it also provides new opportunities for other researchers, journalists, activists, government officials and others to further analyze the data for their needs and make comparisons between prisons and other communities. This is made even easier as we produced the methodology for this project as an open-source code base so that others can apply the code to calculate individual indicators for any spatial boundaries of interest. The codebase can be found on GitHub (https://github.com/GeospatialCentroid/NASA-prison-EJ) and is also published via Zenodo (https://zenodo.org/record/8306856).

  15. U.S. Urban Heat Island Mapping Campaign

    • heat.gov
    • gis-for-racialequity.hub.arcgis.com
    • +5more
    Updated Jul 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). U.S. Urban Heat Island Mapping Campaign [Dataset]. https://www.heat.gov/datasets/esri::u-s-urban-heat-island-mapping-campaign/about
    Explore at:
    Dataset updated
    Jul 16, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Cities in the U.S. are getting hotter, and that is causing significant health risks, especially to minorities, the elderly, and impoverished. There is significant spatial variation in temperature across a city due to changes in the landscape (elevation, tree cover, development, etc). NOAA has been engaged in a nationwide effort with CAPA Strategies to use a combination of Sentinel-2 satellite data along with temperature readings recorded from car- and bike-mounted sensors to generate detailed maps of the urban areas most impacted by heat. These measurements have been combined into single raster layers for morning, afternoon, and evening temperatures. As of 2020, 27 cities (26 in the U.S) have been mapped; a total of 50 cities will be mapped by the end of 2021. This layer shows the census tract (neighborhood) averages for those temperatures, along with additional information calculated for each neighborhood including:Temperature anomaly (neighborhood temperature compared to the citywide average based on the CAPA data)Impervious surfaceTree coverDemographicsTotal populationPopulation <5Population >65MinorityMedian incomePovertyCombining these different types of information can help planners identify areas at risk and help to develop mitigation and resilience plans to improve urban living conditions. More information about the campaign can be found in this Story Map by NOAA.

  16. E

    DayRec: An Interface for Exploring United States Record-Maximum/Minimum...

    • data.ess-dive.lbl.gov
    • osti.gov
    Updated Nov 15, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dale P. Kaiser (2012). DayRec: An Interface for Exploring United States Record-Maximum/Minimum Daily Temperatures [Dataset]. http://doi.org/10.3334/CDIAC/CLI.101
    Explore at:
    Dataset updated
    Nov 15, 2012
    Dataset provided by
    Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
    Authors
    Dale P. Kaiser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1901 - Dec 31, 2012
    Area covered
    Variables measured
    record-low maximum temperature, record-low minimum temperature, record-high maximum temperature, record-high minimum temperature
    Dataset funded by
    U.S. DOE > Office of Science (SC) > Biological and Environmental Research (BER) (SC-23)
    Description

    Like politics, you might say that all climate is local. As researchers seek to help the public better understand climate and climate change, a sensible approach would include helping people know more about changes in their own backyards. High and low temperatures are something that all of us pay attention to each day; when they are extreme (flirting with or setting records) they generate tremendous interest, largely because of the potential for significant impacts on human health, the environment, and built infrastructure. Changes through time in record high and low temperatures (extremes) are also an important manifestation of climate change (Sect. 3.8 in Trenberth et al. 2007; Peterson et al. 2008; Peterson et al. 2012). Meehl et al. (2009) found that currently, about twice as many high temperature records are being set as low temperature records over the conterminous U.S. (lower 48 states) as a whole. As the climate warms further, this ratio is expected to multiply, mainly because when the whole temperature distribution for a location or region shifts, it changes the 'tails' of the distribution (in the case of warming this means fewer extreme cold temperatures and more extreme hot temperatures; see Page 2, Figure ES.1 of Karl et al. 2008). The Meehl et al. (2009) findings were covered pretty well by the online media, but, as is the case for all types of scientifc studies, it's safe to say that most of the public are not aware of these basic findings, and they would benefit from additional ways to get climate extremes information for their own areas and assess it. One such way is the National Climatic Data Center's (NCDC) U.S. Records Look-Up page. But how do most people typically hear about their area's high and low temperature records? Likely via the evening news, when their local on-air meteorologist notes the high/low for the day at a nearby airport then gives the years when the all-time high and low for the date were set (perhaps not at that same airport). The year of the record is an interesting bit of information on its own but it doesn't do much to place things in context. What about the local history of record temperatures and how things may be changing? Here we present a daily temperature records data product that we hope will serve the scientist and non-scientist alike in exploring and analyzing high and low temperature records and trends at hundreds of locations across the U.S.

  17. E

    Shark-Borne Temperature Profiles: Tiger Shark 244397

    • pae-paha.pacioos.hawaii.edu
    Updated Dec 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kim N. Holland (2023). Shark-Borne Temperature Profiles: Tiger Shark 244397 [Dataset]. https://pae-paha.pacioos.hawaii.edu/erddap/info/himb_shark_profiles_244397/index.html
    Explore at:
    Dataset updated
    Dec 5, 2023
    Dataset provided by
    Pacific Islands Ocean Observing System (PacIOOS)
    Authors
    Kim N. Holland
    Time period covered
    Oct 5, 2023 - Dec 5, 2023
    Area covered
    Variables measured
    ptt, time, altitude, latitude, tag_time, longitude, profile_id, temperature, error_radius, specimen_sex, and 18 more
    Description

    Ocean temperature depth profiles as measured via a tagged tiger shark (Galeocerdo cuvier). Data are transmitted via satellite when the shark's dorsal fin surfaces the water, including ocean temperatures at 15 depths distributed across the most recent ascending profile. The timestamp and spatial coordinates of each surface transmission are assigned to the entire profile. _NCProperties=version=2,netcdf=4.7.4,hdf5=1.12.0, acknowledgement=The Pacific Islands Ocean Observing System (PacIOOS) is funded through the National Oceanic and Atmospheric Administration (NOAA) as a Regional Association within the U.S. Integrated Ocean Observing System (IOOS). PacIOOS is coordinated by the University of Hawaii School of Ocean and Earth Science and Technology (SOEST). cdm_data_type=Profile cdm_profile_variables=profile_id, time, latitude, longitude comment=Sensors are deployed by Kim N. Holland (kholland@hawaii.edu), Carl G. Meyer (carlm@hawaii.edu), and the Shark Research Lab of the Hawaii Institute of Marine Biology (HIMB) in the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa (UH). Data are accessed from Wildlife Computers and converted to NetCDF by James T. Potemra (jimp@hawaii.edu) and PacIOOS for serving via ERDDAP. contributor2_email=jimp@hawaii.edu contributor2_institution=University of Hawaii at Manoa contributor2_name=James T. Potemra contributor2_role=originator contributor2_type=person contributor2_url=https://www.higp.hawaii.edu/index.php/people/james-potemra/ contributor3_email=support@wildlifecomputers.com contributor3_institution=Wildlife Computers contributor3_name=Wildlife Computers contributor3_role=resourceProvider contributor3_type=institution contributor3_url=https://wildlifecomputers.com contributor_email=carlm@hawaii.edu contributor_institution=Hawaii Institue of Marine Biology (HIMB) contributor_name=Carl G. Meyer contributor_role=originator contributor_type=person contributor_url=https://himbsharklab.com Conventions=CF-1.6, ACDD-1.3, IOOS-1.2 data_center=Pacific Islands Ocean Observing System (PacIOOS) data_center_email=info@pacioos.org date_metadata_modified=2023-12-05T17:01:21Z defaultDataQuery=profile_id,time,latitude,longitude,altitude,temperature defaultGraphQuery=temperature,altitude&.draw=lines distribution_statement=PacIOOS data may be re-used, provided that related metadata explaining the data have been reviewed by the user, and that the data are appropriately acknowledged. Data, products and services from PacIOOS are provided "as is" without and warranty as to fitness for a particular purpose. Easternmost_Easting=-146.7106 featureType=Profile geospatial_lat_max=30.4948 geospatial_lat_min=21.13001 geospatial_lat_units=degrees_north geospatial_lon_max=-146.7106 geospatial_lon_min=-158.017 geospatial_lon_units=degrees_east geospatial_vertical_max=0.25 geospatial_vertical_min=-743.75 geospatial_vertical_positive=up geospatial_vertical_units=m history=2023-10-04T00:00:00Z Tag deployment. id=himb_shark_profiles_244397 infoUrl=https://www.pacioos.hawaii.edu/projects/sharks/ institution=Pacific Islands Ocean Observing System (PacIOOS) instrument=In Situ/Laboratory Instruments > Profilers/Sounders, In Situ/Laboratory Instruments Temperature/Humidity Sensors > > > Temperature Sensors instrument_vocabulary=GCMD Instrument Keywords ISO_Topic_Categories=biota, oceans keywords_vocabulary=GCMD Science Keywords local_time_zone=-10 locations=Continent > North America > United States Of America > Hawaii, Ocean > Pacific Ocean > Central Pacific Ocean > Hawaiian Islands > Oahu locations_vocabulary=GCMD Location Keywords metadata_link=https://www.pacioos.hawaii.edu/metadata/himb_shark_profiles_244397.html naming_authority=org.pacioos ncei_template_version=NCEI_NetCDF_Profile_Incomplete_Template_v2.0 Northernmost_Northing=30.4948 platform=Earth Science > Biological Classification > Animals/Vertebrates > Fish > Sharks/Rays/Chimaeras > Sharks > Tiger Shark, In Situ Ocean-based Platforms platform_code=244397 platform_vocabulary=GCMD Platform Keywords processing_level=near real-time (nrt) program=Pacific Islands Ocean Observing System (PacIOOS) project=Pacific Islands Ocean Observing System (PacIOOS) sea_name=North Pacific Ocean source=animal-borne in-situ measurement of water properties sourceUrl=https://himbsharklab.com Southernmost_Northing=21.13001 standard_name_vocabulary=CF Standard Name Table v71 subsetVariables=time, profile_id, location_source, location_class time_coverage_end=2023-12-05T00:55:00Z time_coverage_start=2023-10-05T04:15:00Z uuid=org.pacioos.himb_shark_profiles_244397 Westernmost_Easting=-158.017

  18. u

    Data for: Climate impacts and adaptation in US dairy systems 1981–2018

    • agdatacommons.nal.usda.gov
    bin
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Gisbert-Queral; Nathan Mueller (2025). Data for: Climate impacts and adaptation in US dairy systems 1981–2018 [Dataset]. http://doi.org/10.5281/zenodo.4818011
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Zenodo
    Authors
    Maria Gisbert-Queral; Nathan Mueller
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States
    Description

    Data is archived here: https://doi.org/10.5281/zenodo.4818011Data and code archive provides all the files that are necessary to replicate the empirical analyses that are presented in the paper "Climate impacts and adaptation in US dairy systems 1981-2018" authored by Maria Gisbert-Queral, Arne Henningsen, Bo Markussen, Meredith T. Niles, Ermias Kebreab, Angela J. Rigden, and Nathaniel D. Mueller and published in 'Nature Food' (2021, DOI: 10.1038/s43016-021-00372-z). The empirical analyses are entirely conducted with the "R" statistical software using the add-on packages "car", "data.table", "dplyr", "ggplot2", "grid", "gridExtra", "lmtest", "lubridate", "magrittr", "nlme", "OneR", "plyr", "pracma", "quadprog", "readxl", "sandwich", "tidyr", "usfertilizer", and "usmap". The R code was written by Maria Gisbert-Queral and Arne Henningsen with assistance from Bo Markussen. Some parts of the data preparation and the analyses require substantial amounts of memory (RAM) and computational power (CPU). Running the entire analysis (all R scripts consecutively) on a laptop computer with 32 GB physical memory (RAM), 16 GB swap memory, an 8-core Intel Xeon CPU E3-1505M @ 3.00 GHz, and a GNU/Linux/Ubuntu operating system takes around 11 hours. Running some parts in parallel can speed up the computations but bears the risk that the computations terminate when two or more memory-demanding computations are executed at the same time.This data and code archive contains the following files and folders:* READMEDescription: text file with this description* flowchart.pdfDescription: a PDF file with a flow chart that illustrates how R scripts transform the raw data files to files that contain generated data sets and intermediate results and, finally, to the tables and figures that are presented in the paper.* runAll.shDescription: a (bash) shell script that runs all R scripts in this data and code archive sequentially and in a suitable order (on computers with a "bash" shell such as most computers with MacOS, GNU/Linux, or Unix operating systems)* Folder "DataRaw"Description: folder for raw data filesThis folder contains the following files:- DataRaw/COWS.xlsxDescription: MS-Excel file with the number of cows per countySource: USDA NASS QuickstatsObservations: All available counties and years from 2002 to 2012- DataRaw/milk_state.xlsxDescription: MS-Excel file with average monthly milk yields per cowSource: USDA NASS QuickstatsObservations: All available states from 1981 to 2018- DataRaw/TMAX.csvDescription: CSV file with daily maximum temperaturesSource: PRISM Climate Group (spatially averaged)Observations: All counties from 1981 to 2018- DataRaw/VPD.csvDescription: CSV file with daily maximum vapor pressure deficitsSource: PRISM Climate Group (spatially averaged)Observations: All counties from 1981 to 2018- DataRaw/countynamesandID.csvDescription: CSV file with county names, state FIPS codes, and county FIPS codesSource: US Census BureauObservations: All counties- DataRaw/statecentroids.csvDescriptions: CSV file with latitudes and longitudes of state centroidsSource: Generated by Nathan Mueller from Matlab state shapefiles using the Matlab "centroid" functionObservations: All states* Folder "DataGenerated"Description: folder for data sets that are generated by the R scripts in this data and code archive. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these generated data files so that parts of the analysis can be replicated (e.g., on computers with insufficient memory to run all parts of the analysis).* Folder "Results"Description: folder for intermediate results that are generated by the R scripts in this data and code archive. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these intermediate results so that parts of the analysis can be replicated (e.g., on computers with insufficient memory to run all parts of the analysis).* Folder "Figures"Description: folder for the figures that are generated by the R scripts in this data and code archive and that are presented in our paper. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these figures so that people who replicate our analysis can more easily compare the figures that they get with the figures that are presented in our paper. Additionally, this folder contains CSV files with the data that are required to reproduce the figures.* Folder "Tables"Description: folder for the tables that are generated by the R scripts in this data and code archive and that are presented in our paper. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these tables so that people who replicate our analysis can more easily compare the tables that they get with the tables that are presented in our paper.* Folder "logFiles"Description: the shell script runAll.sh writes the output of each R script that it runs into this folder. We provide these log files so that people who replicate our analysis can more easily compare the R output that they get with the R output that we got.* PrepareCowsData.RDescription: R script that imports the raw data set COWS.xlsx and prepares it for the further analyses* PrepareWeatherData.RDescription: R script that imports the raw data sets TMAX.csv, VPD.csv, and countynamesandID.csv, merges these three data sets, and prepares the data for the further analyses* PrepareMilkData.RDescription: R script that imports the raw data set milk_state.xlsx and prepares it for the further analyses* CalcFrequenciesTHI_Temp.RDescription: R script that calculates the frequencies of days with the different THI bins and the different temperature bins in each month for each state* CalcAvgTHI.RDescription: R script that calculates the average THI in each state* PreparePanelTHI.RDescription: R script that creates a state-month panel/longitudinal data set with exposure to the different THI bins* PreparePanelTemp.RDescription: R script that creates a state-month panel/longitudinal data set with exposure to the different temperature bins* PreparePanelFinal.RDescription: R script that creates the state-month panel/longitudinal data set with all variables (e.g., THI bins, temperature bins, milk yield) that are used in our statistical analyses* EstimateTrendsTHI.RDescription: R script that estimates the trends of the frequencies of the different THI bins within our sampling period for each state in our data set* EstimateModels.RDescription: R script that estimates all model specifications that are used for generating results that are presented in the paper or for comparing or testing different model specifications* CalcCoefStateYear.RDescription: R script that calculates the effects of each THI bin on the milk yield for all combinations of states and years based on our 'final' model specification* SearchWeightMonths.RDescription: R script that estimates our 'final' model specification with different values of the weight of the temporal component relative to the weight of the spatial component in the temporally and spatially correlated error term* TestModelSpec.RDescription: R script that applies Wald tests and Likelihood-Ratio tests to compare different model specifications and creates Table S10* CreateFigure1a.RDescription: R script that creates subfigure a of Figure 1* CreateFigure1b.RDescription: R script that creates subfigure b of Figure 1* CreateFigure2a.RDescription: R script that creates subfigure a of Figure 2* CreateFigure2b.RDescription: R script that creates subfigure b of Figure 2* CreateFigure2c.RDescription: R script that creates subfigure c of Figure 2* CreateFigure3.RDescription: R script that creates the subfigures of Figure 3* CreateFigure4.RDescription: R script that creates the subfigures of Figure 4* CreateFigure5_TableS6.RDescription: R script that creates the subfigures of Figure 5 and Table S6* CreateFigureS1.RDescription: R script that creates Figure S1* CreateFigureS2.RDescription: R script that creates Figure S2* CreateTableS2_S3_S7.RDescription: R script that creates Tables S2, S3, and S7* CreateTableS4_S5.RDescription: R script that creates Tables S4 and S5* CreateTableS8.RDescription: R script that creates Table S8* CreateTableS9.RDescription: R script that creates Table S9

  19. d

    In-situ stream temperature monitoring, Alaska

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Mar 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Fish and Wildlife Service (2019). In-situ stream temperature monitoring, Alaska [Dataset]. http://doi.org/10.5063/F19W0CRM
    Explore at:
    Dataset updated
    Mar 14, 2019
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    United States Fish and Wildlife Service
    Time period covered
    Jan 1, 2004 - Jan 1, 2017
    Area covered
    Variables measured
    Link, NOTES, years, Active, Agency, SiteID, Status, UseData, End_date, Latitude, and 32 more
    Description

    US Fish and Wildlife Service has collected hourly stream temperature (C) data at 60 sites throughout Alaska. Some stream temperature recording sites are ongoing. Sampling for each site occurred at some point between 2004 to 2017; each sampling site has at least 1 year of data and at most 7 years. This dataset is part of a larger project to collect a comprehensive statewide inventory of current and historic continuous monitoring locations for stream and lake temperatures. The data was provided by the US Fish and Wildlife Service for archival as part of an effort between the State of Alaskan Salmon and People (SASAP, https://alaskasalmonandpeople.org/) and the Alaska Center for Conservation Science's Alaska Online Aquatic Temperature Site (AKOATS, http://accs.uaa.alaska.edu/aquatic-ecology/akoats/) to make stream temperature data more readily available for researchers. More specific information about sites on the Anadramous Waters Catalog can be found by their corresponding AWC codes on the Anadramous Waters Catalog section on the Alaska Department of Fish and Game website (https://www.adfg.alaska.gov/static-sf/AWC/PDFs/2017swt_CATALOG.pdf).

  20. Infrastructure Climate Resilience Assessment Data Starter Kit for United...

    • zenodo.org
    zip
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2024). Infrastructure Climate Resilience Assessment Data Starter Kit for United States Virgin Islands [Dataset]. http://doi.org/10.5281/zenodo.10796619
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    U.S. Virgin Islands
    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2023)
    • railways (OpenStreetMap, 2023)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Urban Observatory by Esri (2020). Urban Heat Islands [Dataset]. https://hub.arcgis.com/maps/UrbanObservatory::urban-heat-islands/about
Organization logo

Urban Heat Islands

Explore at:
Dataset updated
Feb 13, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Urban Observatory by Esri
Description

This scene contains the relative heat severity for every pixel for every city in the United States, from this source layer. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this scene is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.

Search
Clear search
Close search
Google apps
Main menu