12 datasets found
  1. MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane

    • zenodo.org
    Updated May 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous; Anonymous (2025). MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane [Dataset]. http://doi.org/10.5281/zenodo.15401479
    Explore at:
    Dataset updated
    May 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous; Anonymous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane

    We present a Multiplatform Annotated Dataset for Societal Impact of Hurricane (MASH) that includes 98,662 relevant social media data posts from Reddit, X, TikTok, and YouTube.
    In addition, all relevant posts are annotated on three dimensions: Humanitarian Classes, Bias Classes, and Information Integrity Classes in a multi-modal approach that considers both textual and visual content (text, images, and videos), providing a rich labeled dataset for in-depth analysis.
    The dataset is also complemented by an Online Analytics Platform (https://hurricane.web.illinois.edu/) that not only allows users to view hurricane-related posts and articles, but also explores high-frequency keywords, user sentiment, and the locations where posts were made.
    To our best knowledge, MASH is the first large-scale, multi-platform, multimodal, and multi-dimensionally annotated hurricane dataset. We envision that MASH can contribute to the study of hurricanes' impact on society, such as disaster severity classification, event detections, public sentiment analysis, and bias identification.

    Usage Notice

    This dataset includes four annotation files:
    • reddit_anno_publish.csv
    • tiktok_anno_publish.csv
    • twitter_anno_publish.csv
    • youtube_anno_publish.csv
    Each file contains post IDs and corresponding annotations on three dimensions: Humanitarian Classes, Bias Classes, and Information Integrity Classes.
    To protect user privacy, only post IDs are released. We recommend retrieving the full post content via the official APIs of each platform, in accordance with their respective terms of service.

    Humanitarian Classes

    Each post is annotated with seven binary humanitarian classes. For each class, the label is either:
    • True – the post contains this humanitarian information
    • False – the post does not contain this information
    These seven humanitarian classes include:
    • Casualty: The post reports people or animals who are killed, injured, or missing during the hurricane.
    • Evacuation: The post describes the evacuation, relocation, rescue, or displacement of individuals or animals due to the hurricane.
    • Damage: The post reports damage to infrastructure or public utilities caused by the hurricane.
    • Advice: The post provides advice, guidance, or suggestions related to hurricanes, including how to stay safe, protect property, or prepare for the disaster.
    • Request: Request for help, support, or resources due to the hurricane
    • Assistance: This includes both physical aid and emotional or psychological support provided by individuals, communities, or organizations.
    • Recovery: The post describes efforts or activities related to the recovery and rebuilding process after the hurricane.
    Note: A single post may be labeled as True for multiple humanitarian categories.

    Bias Classes

    Each post is annotated with five binary bias classes. For each class, the label is either:
    • True – the post contains this bias information
    • False – the post does not contain this information
    These five bias classes include:
    • Linguistic Bias: The post contains biased, inappropriate, or offensive language, with a focus on word choice, tone, or expression.
    • Political Bias: The post expresses political ideology, showing favor or disapproval toward specific political actors, parties, or policies.
    • Gender Bias: The post contains biased, stereotypical, or discriminatory language or viewpoints related to gender.
    • Hate Speech: The post contains language that expresses hatred, hostility, or dehumanization toward a specific group or individual, especially those belonging to minority or marginalized communities.
    • Racial Bias: The post contains biased, discriminatory, or stereotypical statements directed toward one or more racial or ethnic groups.
    Note: A single post may be labeled as True for multiple bias categories.

    Information Integrity Classes

    Each post is also annotated with a single information integrity class, represented by an integer:
    • -1 → False information (i.e., misinformation or disinformation)
    • 0 → Unverifiable information (unclear or lacking sufficient evidence)
    • 1 → True information (verifiable and accurate)

    Key Notes

    1. This dataset is also available at https://huggingface.co/datasets/YRC10/MASH.
    2. Version 1 is no longer available.
  2. Recent Hurricanes, Cyclones and Typhoons

    • disasterpartners.org
    • climate.esri.ca
    • +27more
    Updated Jun 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Recent Hurricanes, Cyclones and Typhoons [Dataset]. https://www.disasterpartners.org/datasets/esri2::recent-hurricanes-cyclones-and-typhoons
    Explore at:
    Dataset updated
    Jun 11, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Earth
    Description

    This layer features tropical storm (hurricanes, typhoons, cyclones) tracks, positions, and observed wind swaths from the past hurricane season for the Atlantic, Pacific, and Indian Basins. These are products from the National Hurricane Center (NHC) and Joint Typhoon Warning Center (JTWC). They are part of an archive of tropical storm data maintained in the International Best Track Archive for Climate Stewardship (IBTrACS) database by the NOAA National Centers for Environmental Information.Data SourceNOAA National Hurricane Center tropical cyclone best track archive.Update FrequencyWe automatically check these products for updates every 15 minutes from the NHC GIS Data page.The NHC shapefiles are parsed using the Aggregated Live Feeds methodology to take the returned information and serve the data through ArcGIS Server as a map service.Area CoveredWorldWhat can you do with this layer?Customize the display of each attribute by using the ‘Change Style’ option for any layer.Run a filter to query the layer and display only specific types of storms or areas.Add to your map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools like ‘Enrich Data’ on the Observed Wind Swath layer to determine the impact of cyclone events on populations.Visualize data in ArcGIS Insights or Operations Dashboards.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  3. A

    ‘Natural Disasters Data Explorer’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Natural Disasters Data Explorer’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-natural-disasters-data-explorer-7a49/727fdafd/?iid=034-407&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Natural Disasters Data Explorer’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mathurinache/natural-disasters-data-explorer on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Disasters include all geophysical, meteorological and climate events including earthquakes, volcanic activity, landslides, drought, wildfires, storms, and flooding. Decadal figures are measured as the annual average over the subsequent ten-year period.

    Content

    Thanks to Our World in Data, you can explore death from natural disasters by country and by date.

    Acknowledgements

    https://www.acacamps.org/sites/default/files/resource_library_images/naturaldisaster4.jpg" alt="Natural Disasters">

    Inspiration

    List of variables for inspiration: Number of deaths from drought Number of people injured from drought Number of people affected from drought Number of people left homeless from drought Number of total people affected by drought Reconstruction costs from drought Insured damages against drought Total economic damages from drought Death rates from drought Injury rates from drought Number of people affected by drought per 100,000 Homelessness rate from drought Total number of people affected by drought per 100,000 Number of deaths from earthquakes Number of people injured from earthquakes Number of people affected by earthquakes Number of people left homeless from earthquakes Number of total people affected by earthquakes Reconstruction costs from earthquakes Insured damages against earthquakes Total economic damages from earthquakes Death rates from earthquakes Injury rates from earthquakes Number of people affected by earthquakes per 100,000 Homelessness rate from earthquakes Total number of people affected by earthquakes per 100,000 Number of deaths from disasters Number of people injured from disasters Number of people affected by disasters Number of people left homeless from disasters Number of total people affected by disasters Reconstruction costs from disasters Insured damages against disasters Total economic damages from disasters Death rates from disasters Injury rates from disasters Number of people affected by disasters per 100,000 Homelessness rate from disasters Total number of people affected by disasters per 100,000 Number of deaths from volcanic activity Number of people injured from volcanic activity Number of people affected by volcanic activity Number of people left homeless from volcanic activity Number of total people affected by volcanic activity Reconstruction costs from volcanic activity Insured damages against volcanic activity Total economic damages from volcanic activity Death rates from volcanic activity Injury rates from volcanic activity Number of people affected by volcanic activity per 100,000 Homelessness rate from volcanic activity Total number of people affected by volcanic activity per 100,000 Number of deaths from floods Number of people injured from floods Number of people affected by floods Number of people left homeless from floods Number of total people affected by floods Reconstruction costs from floods Insured damages against floods Total economic damages from floods Death rates from floods Injury rates from floods Number of people affected by floods per 100,000 Homelessness rate from floods Total number of people affected by floods per 100,000 Number of deaths from mass movements Number of people injured from mass movements Number of people affected by mass movements Number of people left homeless from mass movements Number of total people affected by mass movements Reconstruction costs from mass movements Insured damages against mass movements Total economic damages from mass movements Death rates from mass movements Injury rates from mass movements Number of people affected by mass movements per 100,000 Homelessness rate from mass movements Total number of people affected by mass movements per 100,000 Number of deaths from storms Number of people injured from storms Number of people affected by storms Number of people left homeless from storms Number of total people affected by storms Reconstruction costs from storms Insured damages against storms Total economic damages from storms Death rates from storms Injury rates from storms Number of people affected by storms per 100,000 Homelessness rate from storms Total number of people affected by storms per 100,000 Number of deaths from landslides Number of people injured from landslides Number of people affected by landslides Number of people left homeless from landslides Number of total people affected by landslides Reconstruction costs from landslides Insured damages against landslides Total economic damages from landslides Death rates from landslides Injury rates from landslides Number of people affected by landslides per 100,000 Homelessness rate from landslides Total number of people affected by landslides per 100,000 Number of deaths from fog Number of people injured from fog Number of people affected by fog Number of people left homeless from fog Number of total people affected by fog Reconstruction costs from fog Insured damages against fog Total economic damages from fog Death rates from fog Injury rates from fog Number of people affected by fog per 100,000 Homelessness rate from fog Total number of people affected by fog per 100,000 Number of deaths from wildfires Number of people injured from wildfires Number of people affected by wildfires Number of people left homeless from wildfires Number of total people affected by wildfires Reconstruction costs from wildfires Insured damages against wildfires Total economic damages from wildfires Death rates from wildfires Injury rates from wildfires Number of people affected by wildfires per 100,000 Homelessness rate from wildfires Total number of people affected by wildfires per 100,000 Number of deaths from extreme temperatures Number of people injured from extreme temperatures Number of people affected by extreme temperatures Number of people left homeless from extreme temperatures Number of total people affected by extreme temperatures Reconstruction costs from extreme temperatures Insured damages against extreme temperatures Total economic damages from extreme temperatures Death rates from extreme temperatures Injury rates from extreme temperatures Number of people affected by extreme temperatures per 100,000 Homelessness rate from extreme temperatures Total number of people affected by extreme temperatures per 100,000 Number of deaths from glacial lake outbursts Number of people injured from glacial lake outbursts Number of people affected by glacial lake outbursts Number of people left homeless from glacial lake outbursts Number of total people affected by glacial lake outbursts Reconstruction costs from glacial lake outbursts Insured damages against glacial lake outbursts Total economic damages from glacial lake outbursts Death rates from glacial lake outbursts Injury rates from glacial lake outbursts Number of people affected by glacial lake outbursts per 100,000 Homelessness rate from glacial lake outbursts Total number of people affected by glacial lake outbursts per 100,000 Total economic damages from disasters as a share of GDP Total economic damages from drought as a share of GDP Total economic damages from earthquakes as a share of GDP Total economic damages from extreme temperatures as a share of GDP Total economic damages from floods as a share of GDP Total economic damages from landslides as a share of GDP Total economic damages from mass movements as a share of GDP Total economic damages from storms as a share of GDP Total economic damages from volcanic activity as a share of GDP Total economic damages from volcanic activity as a share of GDP Entity Year deaths_rate_per_100k_storm injured_rate_per_100k_storm total_affected_rate_per_100k_all_disasters

    --- Original source retains full ownership of the source dataset ---

  4. c

    Active Hurricanes, Cyclones and Typhoons

    • resilience.climate.gov
    • national-government.esrij.com
    • +27more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Active Hurricanes, Cyclones and Typhoons [Dataset]. https://resilience.climate.gov/maps/248e7b5827a34b248647afb012c58787
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Earth
    Description

    Hurricane tracks and positions provide information on where the storm has been, where it is currently located, and where it is predicted to go. Each storm location is depicted by the sustained wind speed, according to the Saffir-Simpson Scale. It should be noted that the Saffir-Simpson Scale only applies to hurricanes in the Atlantic and Eastern Pacific basins, however all storms are still symbolized using that classification for consistency.Data SourceThis data is provided by NOAA National Hurricane Center (NHC) for the Central+East Pacific and Atlantic, and the Joint Typhoon Warning Center for the West+Central Pacific and Indian basins. For more disaster-related live feeds visit the Disaster Web Maps & Feeds ArcGIS Online Group.Sample DataSee Sample Layer Item for sample data during inactive Hurricane Season!Update FrequencyThe Aggregated Live Feeds methodology checks the Source for updates every 15 minutes. Tropical cyclones are normally issued every six hours at 5:00 AM EDT, 11:00 AM EDT, 5:00 PM EDT, and 11:00 PM EDT (or 4:00 AM EST, 10:00 AM EST, 4:00 PM EST, and 10:00 PM EST).Public advisories for Eastern Pacific tropical cyclones are normally issued every six hours at 2:00 AM PDT, 8:00 AM PDT, 2:00 PM PDT, and 8:00 PM PDT (or 1:00 AM PST, 7:00 AM PST, 1:00 PM PST, and 7:00 PM PST).Intermediate public advisories may be issued every 3 hours when coastal watches or warnings are in effect, and every 2 hours when coastal watches or warnings are in effect and land-based radars have identified a reliable storm center. Additionally, special public advisories may be issued at any time due to significant changes in warnings or in a cyclone. For the NHC data source you can subscribe to RSS Feeds.North Pacific and North Indian Ocean tropical cyclone warnings are updated every 6 hours, and South Indian and South Pacific Ocean tropical cyclone warnings are routinely updated every 12 hours. Times are set to Zulu/UTC.Scale/ResolutionThe horizontal accuracy of these datasets is not stated but it is important to remember that tropical cyclone track forecasts are subject to error, and that the effects of a tropical cyclone can span many hundreds of miles from the center.Area CoveredWorldGlossaryForecast location: Represents the official NHC forecast locations for the center of a tropical cyclone. Forecast center positions are given for projections valid 12, 24, 36, 48, 72, 96, and 120 hours after the forecast's nominal initial time. Click here for more information.

    Forecast points from the JTWC are valid 12, 24, 36, 48 and 72 hours after the forecast’s initial time.Forecast track: This product aids in the visualization of an NHC official track forecast, the forecast points are connected by a red line. The track lines are not a forecast product, as such, the lines should not be interpreted as representing a specific forecast for the location of a tropical cyclone in between official forecast points. It is also important to remember that tropical cyclone track forecasts are subject to error, and that the effects of a tropical cyclone can span many hundreds of miles from the center. Click here for more information.The Cone of Uncertainty: Cyclone paths are hard to predict with absolute certainty, especially days in advance.

    The cone represents the probable track of the center of a tropical cyclone and is formed by enclosing the area swept out by a set of circles along the forecast track (at 12, 24, 36 hours, etc). The size of each circle is scaled so that two-thirds of the historical official forecast errors over a 5-year sample fall within the circle. Based on forecasts over the previous 5 years, the entire track of a tropical cyclone can be expected to remain within the cone roughly 60-70% of the time. It is important to note that the area affected by a tropical cyclone can extend well beyond the confines of the cone enclosing the most likely track area of the center. Click here for more information. Now includes 'Danger Area' Polygons from JTWC, detailing US Navy Ship Avoidance Area when Wind speeds exceed 34 Knots!Coastal Watch/Warning: Coastal areas are placed under watches and warnings depending on the proximity and intensity of the approaching storm.Tropical Storm Watch is issued when a tropical cyclone containing winds of 34 to 63 knots (39 to 73 mph) or higher poses a possible threat, generally within 48 hours. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. The watch does not mean that tropical storm conditions will occur. It only means that these conditions are possible.Tropical Storm Warning is issued when sustained winds of 34 to 63 knots (39 to 73 mph) or higher associated with a tropical cyclone are expected in 36 hours or less. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding.Hurricane Watch is issued when a tropical cyclone containing winds of 64 knots (74 mph) or higher poses a possible threat, generally within 48 hours. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. The watch does not mean that hurricane conditions will occur. It only means that these conditions are possible.Hurricane Warning is issued when sustained winds of 64 knots (74 mph) or higher associated with a tropical cyclone are expected in 36 hours or less. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. A hurricane warning can remain in effect when dangerously high water or a combination of dangerously high water and exceptionally high waves continue, even though winds may be less than hurricane force.RevisionsMar 13, 2025: Altered 'Forecast Error Cone' layer to include 'Danger Area' with updated symbology.Nov 20, 2023: Added Event Label to 'Forecast Position' layer, showing arrival time and wind speed localized to user's location.Mar 27, 2022: Added UID, Max_SS, Max_Wind, Max_Gust, and Max_Label fields to ForecastErrorCone layer.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  5. u

    Regional Multi-Week Convection-Permitting Simulations using the Model for...

    • rda.ucar.edu
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Regional Multi-Week Convection-Permitting Simulations using the Model for Prediction Across Scales (MPAS-A) for use in the Caribbean, Mexico, and Central America Regions [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Dataset updated
    May 20, 2022
    Description

    The dataset includes native-grid model outputs and post-processed outputs from the first-ever multi-week regional convection-permitting MPAS simulation during September 2017, a period when the devastating Hurricane Maria was active. This ... historic simulation provides a valuable dataset for studying weather and climate across Mesoamerica and the Caribbean using a realistic, storm-resolving model setup. The simulation is the first major outcome of the NSF NCAR Mesoamerica Affinity Group (MAAG) in collaboration with Dr. Kelly Nunez Ocasio at Texas A&M. MPAS-A version 8.0.1 was used to produce this simulation. The Limited-Area domain extends from 20 degree South to 61 degree North and from 145 degree West to 15 degree West. A variable-resolution mesh with 15 km and 3 km grid spacing was used, where the 3 km refinement region is elliptically shaped and centered at 20 degree North and 80 degree West. The refined region covers Central America and the Caribbean, while the 15 km portion of the domain extends well into South and North America. The combination of a Limited-Area domain and variable-resolution mesh was chosen to be computationally efficient while maintaining sufficient resolution at the domain's boundaries to allow for proper dynamical downscaling of initial and lateral boundary conditions. The model was initialized using ERA5 data to simulate the period during which Hurricane Maria (2017) approached the Caribbean and the eastern U.S. This dataset can be used to study Hurricane Maria, other hurricanes that were active during this period, and various weather and climate features of the region, such as low-level jets, coastal diurnal cycles, the ITCZ, extreme rainfall, and mesoscale convective systems, among others. While the model produces outputs at 15 km and 3 km horizontal variable resolutions, the post-processed data have been interpolated to a 0.25 degree by 0.25 degree latitude-longitude grid and 27 isobaric levels in the vertical. The repository also includes namelist files for running the model, a README file, and a PDF describing the variables in each file type.

  6. 🔍 Diverse CSV Dataset Samples

    • kaggle.com
    Updated Nov 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samy Baladram (2023). 🔍 Diverse CSV Dataset Samples [Dataset]. https://www.kaggle.com/datasets/samybaladram/multidisciplinary-csv-datasets-collection/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 6, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Samy Baladram
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Description

    https://i.imgur.com/PcSDv8A.png" alt="Imgur">

    Overview

    The dataset provided here is a rich compilation of various data files gathered to support diverse analytical challenges and education in data science. It is especially curated to provide researchers, data enthusiasts, and students with real-world data across different domains, including biostatistics, travel, real estate, sports, media viewership, and more.

    Files

    Below is a brief overview of what each CSV file contains: - Addresses: Practical examples of string manipulation and address data formatting in CSV. - Air Travel: Historical dataset suitable for analyzing trends in air travel over a period of three years. - Biostats: A dataset of office workers' biometrics, ideal for introductory statistics and biology. - Cities: Geographic and administrative data for urban analysis or socio-demographic studies. - Car Crashes in Catalonia: Weekly traffic accident data from Catalonia, providing a base for public policy research. - De Niro's Film Ratings: Analyze trends in film ratings over time with this entertainment-focused dataset. - Ford Escort Sales: Pre-owned vehicle sales data, perfect for regression analysis or price prediction models. - Old Faithful Geyser: Geological data for pattern recognition and prediction in natural phenomena. - Freshman Year Weights and BMIs: Dataset depicting weight and BMI changes for health and lifestyle studies. - Grades: Education performance data which can be correlated with demographics or study patterns. - Home Sales: A dataset reflecting the housing market dynamics, useful for economic analysis or real estate appraisal. - Hooke's Law Demonstration: Physics data illustrating the classic principle of elasticity in springs. - Hurricanes and Storm Data: Climate data on hurricane and storm frequency for environmental risk assessments. - Height and Weight Measurements: Public health research dataset on anthropometric data. - Lead Shot Specs: Detailed engineering data for material sciences and manufacturing studies. - Alphabet Letter Frequency: Text analysis dataset for frequency distribution studies in large text samples. - MLB Player Statistics: Comprehensive athletic data set for analysis of performance metrics in sports. - MLB Teams' Seasonal Performance: A dataset combining financial and sports performance data from the 2012 MLB season. - TV News Viewership: Media consumption data which can be used to analyze viewing patterns and trends. - Historical Nile Flood Data: A unique environmental dataset for historical trend analysis in flood levels. - Oscar Winner Ages: A dataset to explore age trends among Oscar-winning actors and actresses. - Snakes and Ladders Statistics: Data from the game outcomes useful in studying probability and game theory. - Tallahassee Cab Fares: Price modeling data from the real-world pricing of taxi services. - Taxable Goods Data: A snapshot of economic data concerning taxation impact on prices. - Tree Measurements: Ecological and environmental science data related to tree growth and forest management. - Real Estate Prices from Zillow: Market analysis dataset for those interested in housing price determinants.

    Format

    The enclosed data respect the comma-separated values (CSV) file format standards, ensuring compatibility with most data processing libraries in Python, R, and other languages. The datasets are ready for import into Jupyter notebooks, RStudio, or any other integrated development environment (IDE) used for data science.

    Quality Assurance

    The data is pre-checked for common issues such as missing values, duplicate records, and inconsistent entries, offering a clean and reliable dataset for various analytical exercises. With initial header lines in some CSV files, users can easily identify dataset fields and start their analysis without additional data cleaning for headers.

    Acknowledgements

    The dataset adheres to the GNU LGPL license, making it freely available for modification and distribution, provided that the original source is cited. This opens up possibilities for educators to integrate real-world data into curricula, researchers to validate models against diverse datasets, and practitioners to refine their analytical skills with hands-on data.

    This dataset has been compiled from https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html, with gratitude to the authors and maintainers for their dedication to providing open data resources for educational and research purposes. https://i.imgur.com/HOtyghv.png" alt="Imgur">

  7. w

    Worked full-time, year-round in the past 12 months poverty in Hurricane,...

    • welfareinfo.org
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WelfareInfo.org (2024). Worked full-time, year-round in the past 12 months poverty in Hurricane, West Virginia (2022) [Dataset]. https://www.welfareinfo.org/poverty-rate/west-virginia/hurricane/stat-people-who-worked-full-time/
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    WelfareInfo.org
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hurricane, West Virginia
    Description

    Worked full-time, year-round in the past 12 months Poverty Rate Statistics for 2022. This is part of a larger dataset covering poverty in Hurricane, West Virginia by age, education, race, gender, work experience and more.

  8. u

    Planetary-boundary and urban-canopy layer modeling study of the landfall of...

    • rda.ucar.edu
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Planetary-boundary and urban-canopy layer modeling study of the landfall of Hurricane Irma (2017) in Miami [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Dataset updated
    May 20, 2022
    Description

    This data repository contains the model simulation and observational data used in ... manuscript: There are four Weather Research and Forecasting (WRF) model simulations consisting of two planetary boundary layer (PBL) parameterizations and two urban canopy models. The PBL schemes are Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU). The urban canopy models are a simple bulk scheme and the multilayer Building Effects Parameterization (BEP). The observational data consists of Automated Surface Observing Systems (ASOS) stations of Palm Beach International Airport (KPBI), Miami International Airport (KMIA), Pompano Beach Airpark (KPMP), the Fowey Rocks station from the National Oceanic and Atmospheric Administration (NOAA) National Data Buoy Center, the University of Miami Health Center WeatherStem station, and an observational wind swath analysis of Hurricane Irma from the NOAA National Hurricane Center (NHC).

  9. u

    WRF-Chem Simulations of Dust Storms With and Without Inserting SMAP Soil...

    • rda.ucar.edu
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). WRF-Chem Simulations of Dust Storms With and Without Inserting SMAP Soil Moisture Retrievals [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Dataset updated
    May 20, 2022
    Description

    In that study, eight dust storms in the western U.S. from 2015-2021 were simulated with the WRF-Chem model at 9 km grid spacing, with one simulation directly inserting soil moisture ... retrievals from the Soil Moisture Active Passive (SMAP) satellite into WRF-Chem ("Insert SMAP"), and the other leaving the WRF-Chem soil moisture field uncorrected ("No SMAP"). Model simulations were validated against ASOS METAR observations of 10 m wind speed, U.S. Climate Reference Network (USCRN) observations of soil moisture content, Aerosol Robotic Network (AERONET) retrievals of aerosol optical depth (AOD), and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of AOD. For all eight cases, this dataset includes 1-hourly and 15-minute WRF-Chem model output for both Insert SMAP and No SMAP experiments for a limited set of relevant variables, USCRN station observations, AERONET station retrievals, and matched-pairs of valid MODIS AOD retrievals with WRF-Chem simulated AOD. All data files are provided in NetCDF.

  10. ECO-DRR - Tropical Cyclone frequency

    • datacore-gn.unepgrid.ch
    Updated May 3, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNEP, Crisis Management Branch, Geneva (2020). ECO-DRR - Tropical Cyclone frequency [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/ac183684-6c54-45c0-9aa2-5e525fabaa55
    Explore at:
    www:link-1.0-http--link, ogc:wms-1.3.0-http-get-mapAvailable download formats
    Dataset updated
    May 3, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1970 - Dec 31, 2011
    Area covered
    Description

    EcoDRR global classification scheme based on spatial combination of ecosystem coverage and natural hazard physical exposure. The physical exposure data-set shows the product of hazard frequency and people exposed to this hazard in the same 100 square kilometer cell. For a specific natural hazard, a 0.01 degree resolution raster is generated, showing hazard annual frequency weighted with portion of pixel potentially affected. In the case of tropical cyclones, annual frequency is calculated using the category one of the Saffir-Simpson scale. It corresponds to the largest wind buffer of each past event footprint.

    Sources: The dataset includes an estimate of tropical cyclone frequency of Saffir-Simpson category 1. It is based on two sources: 1) IBTrACS v02r01 (1969 - 2008, http://www.ncdc.noaa.gov/oa/ibtracs/), year 2009 completed by online data from JMA, JTWC, UNISYS, Meteo France and data sent by Alan Sharp from the Australian Bureau of Meteorology. 2) A GIS modeling based on an initial equation from Greg Holland, which was further modified to take into consideration the movement of the cyclones through time. Unit is expected average number of event per 100 years multiplied by 100. This product was designed by UNEP/GRID-Europe for the Global Assessment Report on Risk Reduction (GAR). It was modeled using global data. Credit: Raw data: IBTrACS, compilation and GIS processing UNEP/GRID-Europe.

  11. a

    Minor Events

    • resilience-and-adaptation-information-portal-nationalclimate.hub.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). Minor Events [Dataset]. https://resilience-and-adaptation-information-portal-nationalclimate.hub.arcgis.com/datasets/minor-events
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature service depicts the National Weather Service (NWS) watches, warnings, and advisories within the United States. Watches and warnings are classified into 43 categories. Those 43 categories have been filtered to just coastal watches, warnings, and advisories: coastal flooding, hurricanes, tropical storms. A warning is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. A warning means weather conditions pose a threat to life or property. People in the path of the storm need to take protective action.A watch is used when the risk of a hazardous weather or hydrologic event has increased significantly, but its occurrence, location or timing is still uncertain. It is intended to provide enough lead time so those who need to set their plans in motion can do so. A watch means that hazardous weather is possible. People should have a plan of action in case a storm threatens, and they should listen for later information and possible warnings especially when planning travel or outdoor activities.An advisory is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. Advisories are for less serious conditions than warnings, that cause significant inconvenience and if caution is not exercised, could lead to situations that may threaten life or property.SourceNational Weather Service RSS-CAP Warnings and Advisories: Public AlertsNational Weather Service Boundary Overlays: AWIPS Shapefile DatabaseSample DataSee Sample Layer Item for sample data during Weather inactivity!Update FrequencyThe services is updated every 5 minutes using the Aggregated Live Feeds methodology.The overlay data is checked and updated daily from the official AWIPS Shapefile Database.Area CoveredUnited States and TerritoriesWhat can you do with this layer?Customize the display of each attribute by using the Change Style option for any layer.Query the layer to display only specific types of weather watches and warnings.Add to a map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools, such as Enrich Data, to determine the potential impact of weather events on populations.

  12. a

    Extreme Events

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). Extreme Events [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/nationalclimate::coastal-flooding-watches-and-warnings?layer=8
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature service depicts the National Weather Service (NWS) watches, warnings, and advisories within the United States. Watches and warnings are classified into 43 categories. Those 43 categories have been filtered to just coastal watches, warnings, and advisories: coastal flooding, hurricanes, tropical storms. A warning is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. A warning means weather conditions pose a threat to life or property. People in the path of the storm need to take protective action.A watch is used when the risk of a hazardous weather or hydrologic event has increased significantly, but its occurrence, location or timing is still uncertain. It is intended to provide enough lead time so those who need to set their plans in motion can do so. A watch means that hazardous weather is possible. People should have a plan of action in case a storm threatens, and they should listen for later information and possible warnings especially when planning travel or outdoor activities.An advisory is issued when a hazardous weather or hydrologic event is occurring, imminent or likely. Advisories are for less serious conditions than warnings, that cause significant inconvenience and if caution is not exercised, could lead to situations that may threaten life or property.SourceNational Weather Service RSS-CAP Warnings and Advisories: Public AlertsNational Weather Service Boundary Overlays: AWIPS Shapefile DatabaseSample DataSee Sample Layer Item for sample data during Weather inactivity!Update FrequencyThe services is updated every 5 minutes using the Aggregated Live Feeds methodology.The overlay data is checked and updated daily from the official AWIPS Shapefile Database.Area CoveredUnited States and TerritoriesWhat can you do with this layer?Customize the display of each attribute by using the Change Style option for any layer.Query the layer to display only specific types of weather watches and warnings.Add to a map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools, such as Enrich Data, to determine the potential impact of weather events on populations.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anonymous; Anonymous (2025). MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane [Dataset]. http://doi.org/10.5281/zenodo.15401479
Organization logo

MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane

Explore at:
Dataset updated
May 24, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Anonymous; Anonymous
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

MASH: A Multiplatform Annotated Dataset for Societal Impact of Hurricane

We present a Multiplatform Annotated Dataset for Societal Impact of Hurricane (MASH) that includes 98,662 relevant social media data posts from Reddit, X, TikTok, and YouTube.
In addition, all relevant posts are annotated on three dimensions: Humanitarian Classes, Bias Classes, and Information Integrity Classes in a multi-modal approach that considers both textual and visual content (text, images, and videos), providing a rich labeled dataset for in-depth analysis.
The dataset is also complemented by an Online Analytics Platform (https://hurricane.web.illinois.edu/) that not only allows users to view hurricane-related posts and articles, but also explores high-frequency keywords, user sentiment, and the locations where posts were made.
To our best knowledge, MASH is the first large-scale, multi-platform, multimodal, and multi-dimensionally annotated hurricane dataset. We envision that MASH can contribute to the study of hurricanes' impact on society, such as disaster severity classification, event detections, public sentiment analysis, and bias identification.

Usage Notice

This dataset includes four annotation files:
• reddit_anno_publish.csv
• tiktok_anno_publish.csv
• twitter_anno_publish.csv
• youtube_anno_publish.csv
Each file contains post IDs and corresponding annotations on three dimensions: Humanitarian Classes, Bias Classes, and Information Integrity Classes.
To protect user privacy, only post IDs are released. We recommend retrieving the full post content via the official APIs of each platform, in accordance with their respective terms of service.

Humanitarian Classes

Each post is annotated with seven binary humanitarian classes. For each class, the label is either:
• True – the post contains this humanitarian information
• False – the post does not contain this information
These seven humanitarian classes include:
• Casualty: The post reports people or animals who are killed, injured, or missing during the hurricane.
• Evacuation: The post describes the evacuation, relocation, rescue, or displacement of individuals or animals due to the hurricane.
• Damage: The post reports damage to infrastructure or public utilities caused by the hurricane.
• Advice: The post provides advice, guidance, or suggestions related to hurricanes, including how to stay safe, protect property, or prepare for the disaster.
• Request: Request for help, support, or resources due to the hurricane
• Assistance: This includes both physical aid and emotional or psychological support provided by individuals, communities, or organizations.
• Recovery: The post describes efforts or activities related to the recovery and rebuilding process after the hurricane.
Note: A single post may be labeled as True for multiple humanitarian categories.

Bias Classes

Each post is annotated with five binary bias classes. For each class, the label is either:
• True – the post contains this bias information
• False – the post does not contain this information
These five bias classes include:
• Linguistic Bias: The post contains biased, inappropriate, or offensive language, with a focus on word choice, tone, or expression.
• Political Bias: The post expresses political ideology, showing favor or disapproval toward specific political actors, parties, or policies.
• Gender Bias: The post contains biased, stereotypical, or discriminatory language or viewpoints related to gender.
• Hate Speech: The post contains language that expresses hatred, hostility, or dehumanization toward a specific group or individual, especially those belonging to minority or marginalized communities.
• Racial Bias: The post contains biased, discriminatory, or stereotypical statements directed toward one or more racial or ethnic groups.
Note: A single post may be labeled as True for multiple bias categories.

Information Integrity Classes

Each post is also annotated with a single information integrity class, represented by an integer:
• -1 → False information (i.e., misinformation or disinformation)
• 0 → Unverifiable information (unclear or lacking sufficient evidence)
• 1 → True information (verifiable and accurate)

Key Notes

  1. This dataset is also available at https://huggingface.co/datasets/YRC10/MASH.
  2. Version 1 is no longer available.
Search
Clear search
Close search
Google apps
Main menu