33 datasets found
  1. Provisional Death Counts for Influenza, Pneumonia, and COVID-19

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-influenza-pneumonia-and-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

  2. A

    ‘COVID-19 State Data’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘COVID-19 State Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-state-data-287b/0959fdcb/?iid=017-872&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

    --- Original source retains full ownership of the source dataset ---

  3. COVID-19 State Data

    • kaggle.com
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 3, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  4. Deaths due to COVID-19 compared with deaths from influenza and pneumonia

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Deaths due to COVID-19 compared with deaths from influenza and pneumonia [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19comparedwithdeathsfrominfluenzaandpneumonia
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.

  5. Child and Infant Mortality

    • kaggle.com
    Updated Aug 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hrterhrter (2022). Child and Infant Mortality [Dataset]. https://www.kaggle.com/datasets/programmerrdai/child-and-infant-mortality
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 21, 2022
    Dataset provided by
    Kaggle
    Authors
    hrterhrter
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    One in every 100 children dies before completing one year of life. Around 68 percent of infant mortality is attributed to deaths of children before completing 1 month. 15,000 children die every day – Child mortality is an everyday tragedy of enormous scale that rarely makes the headlines Child mortality rates have declined in all world regions, but the world is not on track to reach the Sustainable Development Goal for child mortality Before the Modern Revolution child mortality was very high in all societies that we have knowledge of – a quarter of all children died in the first year of life, almost half died before reaching the end of puberty Over the last two centuries all countries in the world have made very rapid progress against child mortality. From 1800 to 1950 global mortality has halved from around 43% to 22.5%. Since 1950 the mortality rate has declined five-fold to 4.5% in 2015. All countries in the world have benefitted from this progress In the past it was very common for parents to see children die, because both, child mortality rates and fertility rates were very high. In Europe in the mid 18th century parents lost on average between 3 and 4 of their children Based on this overview we are asking where the world is today – where are children dying and what are they dying from?

    5.4 million children died in 2017 – Where did these children die? Pneumonia is the most common cause of death, preterm births and neonatal disorders is second, and diarrheal diseases are third – What are children today dying from? This is the basis for answering the question what can we do to make further progress against child mortality? We will extend this entry over the course of 2020.

    @article{owidchildmortality, author = {Max Roser, Hannah Ritchie and Bernadeta Dadonaite}, title = {Child and Infant Mortality}, journal = {Our World in Data}, year = {2013}, note = {https://ourworldindata.org/child-mortality} }

  6. Provisional COVID-19 Deaths by Sex and Age

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-by-sex-age-and-state
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  7. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  8. Chest Xray Images

    • kaggle.com
    Updated Apr 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamie Dowat (2021). Chest Xray Images [Dataset]. https://www.kaggle.com/jamiedowat/chest-xray-images-guangzhou-women-and-childrens/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 3, 2021
    Dataset provided by
    Kaggle
    Authors
    Jamie Dowat
    Description

    Context

    According to the American Thoracic Society and the American Lung Association:

    Pneumonia is the world’s leading cause of death among children under 5 years of age.

    Pneumonia killed approximately 2,400 children a day in 2015.

    Pneumonia killed an estimated 880,000 children under the age of five in 2016.

    More than 150,000 people are estimated to die from lung cancer each year.

    Infections, including pneumonia, are the second most common cause of death in people with lung cancer.

    From a recent study by the Association of American Medical Colleges (AAMC):

    “The physician workforce shortages that our nation is facing are being felt even more acutely as we mobilize on the front lines to combat the COVID-19 national emergency.” --David J. Skorton, MD, AAMC president and CEO

    The demographic that is going to suffer most from this shortage is patients over age 65: "While the national population is projected to grow by 10.4% during the 15 years covered by the study, the over-65 population is expected to grow by 45.1%."

    Content

    For the original dataset, click here.

    For the sorted dataset needed to run this notebook, click here.

    • CONTENT: 5856 Posterior to Anterior (PA) Chest X-ray images from pediatric patients of one to five years old from Guangzhou Women and Children’s Medical Center, Guangzhou. All chest X-ray imaging was performed as part of patients’ routine clinical care.

    • PROCESS: “For the analysis of chest X-ray images, all chest radiographs were initially screened for quality control by removing all low quality or unreadable scans. The diagnoses for the images were then graded by two expert physicians before being cleared for training the AI system. In order to account for any grading errors, the evaluation set was also checked by a third expert.” (page 12)

    Acknowledgements

    Here's a link to an example project using this dataset: https://github.com/Luv2bnanook44/flatiron_phase4_project

    This dataset was preprocessed from this Kaggle dataset from Paul Mooney: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

  9. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  10. d

    DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC...

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC hospitals for Covid-19 like Illness [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-milestone-data-daily-number-of-people-admitted-to-nyc-hospitals-for-covid-1
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    This dataset shows the number of hospital admissions for influenza-like illness, pneumonia, or include ICD-10-CM code (U07.1) for 2019 novel coronavirus. Influenza-like illness is defined as a mention of either: fever and cough, fever and sore throat, fever and shortness of breath or difficulty breathing, or influenza. Patients whose ICD-10-CM code was subsequently assigned with only an ICD-10-CM code for influenza are excluded. Pneumonia is defined as mention or diagnosis of pneumonia. Baseline data represents the average number of people with COVID-19-like illness who are admitted to the hospital during this time of year based on historical counts. The average is based on the daily avg from the rolling same week (same day +/- 3 days) from the prior 3 years. Percent change data represents the change in count of people admitted compared to the previous day. Data sources include all hospital admissions from emergency department visits in NYC. Data are collected electronically and transmitted to the NYC Health Department hourly. This dataset is updated daily. All identifying health information is excluded from the dataset.

  11. h

    An NIHR Birmingham BRC dataset of Community-Acquired Pneumonia in Older...

    • healthdatagateway.org
    unknown
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). An NIHR Birmingham BRC dataset of Community-Acquired Pneumonia in Older Adults [Dataset]. https://healthdatagateway.org/dataset/1013
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jan 5, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Community acquired pneumonia (CAP) is a leading cause of hospital admission and has high rates of mortality and complications, especially in older people. Data from PIONEER examining CAP admissions in winter 19/20 and winter 20/21 demonstrated that hospital admissions due to CAP fell by 40% in 20/21 compared to 19/20 but the 30-day mortality rate almost doubled in winter 20/21 compared to 19/20. Frailty was thought to be a determinant of poor outcomes.

    To explore this further, PIONEER, working with the NIHR Midlands Biomedical Research Centre Infections and acute care theme, have curated a highly granular dataset of 1,701 community acquired pneumonia admissions for a focused cohort of adults aged 65 years old and over. The data includes demography, comorbidities, Charlson comorbidity index, Manchester mobility score (MMS), clinical frailty score (CFS) and symptoms on presentation, serial physiology and acuity, investigations, CURB-65 assessments, intensive care, treatments (drug, dose, route), diagnostic codes (ICD-10 & SNOMED-CT), outcomes (death and readmissions).

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  12. country health indicators

    • kaggle.com
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nxpnsv (2020). country health indicators [Dataset]. https://www.kaggle.com/datasets/nxpnsv/country-health-indicators
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 7, 2020
    Dataset provided by
    Kaggle
    Authors
    nxpnsv
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset combines multiple open data sets for Covid-19 cases and deaths (kaggle1), Death causes (ourworldindata1, ourworldindata2, ourworldindata3, Food sources (FAO1), Health Care System (WHO1, WHO2, WHO3), TB vaccine status (BCG1) School closures (UNESCO1), and People/Society facts (CIA1).

  13. h

    HDRUK Medicine dataset: Digoxin repurposing as a senolytic in pneumonia

    • healthdatagateway.org
    unknown
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). HDRUK Medicine dataset: Digoxin repurposing as a senolytic in pneumonia [Dataset]. https://healthdatagateway.org/en/dataset/943
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jan 5, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Senescence is defined as a deterioration of function with age. Senolytic drugs clear senescent (ageing) cells from the body and reduce inflammation. These, and other geroprotector drugs are of increasing interest in preventing or reducing the negative effects of ageing on organs, tissues and cells. Digoxin is a drug commonly used to control atrial fibrillation. Animal models suggest digoxin is a senolytic. If digoxin was used as a senolytic, it would be a repurposed use of the drug, where digoxin is used for another indication rather than the one it is commonly prescribed for.

    Community acquired pneumonia (CAP) is a common cause of hospitalisation in older adults and is increasingly recognised as a severe consequence of senescence. There is some evidence to suggest people on digoxin are protected from severe consequences of CAP.

    PIONEER, working with HDRUK Medicines programme, have curated a highly granular dataset of 63,664 CAP admissions. The data includes demography, comorbidities, presenting symptoms, serial physiology, investigations, medications and outcomes. It focuses on a cohort who are and are not taking digoxin.

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment (TRE) build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  14. D

    Provisional COVID-19 Deaths by Sex and Age

    • data.cdc.gov
    csv, xlsx, xml
    Updated Sep 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://data.cdc.gov/widgets/9bhg-hcku
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  15. h

    The impact of COVID on hospitalised patients with COPD; a dataset in OMOP

    • healthdatagateway.org
    unknown
    Updated Feb 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2021). The impact of COVID on hospitalised patients with COPD; a dataset in OMOP [Dataset]. https://healthdatagateway.org/en/dataset/191
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Background. Chronic obstructive pulmonary disease (COPD) is a debilitating lung condition characterised by progressive lung function limitation. COPD is an umbrella term and encompasses a spectrum of pathophysiologies including chronic bronchitis, small airways disease and emphysema. COPD caused an estimated 3 million deaths worldwide in 2016, and is estimated to be the third leading cause of death worldwide. The British Lung Foundation (BLF) estimates that the disease costs the NHS around £1.9 billion per year. COPD is therefore a significant public health challenge. This dataset explores the impact of hospitalisation in patients with COPD during the COVID pandemic.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. There are particularly high rates of physical inactivity, obesity, smoking & diabetes. The West Midlands has a high prevalence of COPD, reflecting the high rates of smoking and industrial exposure. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Scope: All hospitalised patients admitted to UHB during the COVID-19 pandemic first wave, curated to focus on COPD. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes ICD-10 & SNOMED-CT codes pertaining to COPD and COPD exacerbations, as well as all co-morbid conditions. Serial, structured data pertaining to process of care (timings, staff grades, specialty review, wards), presenting complaint, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, nebulisers, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT).

    Available supplementary data: More extensive data including wave 2 patients in non-OMOP form. Ambulance, 111, 999 data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  16. f

    Table 1_Impact of comorbidities and personal characteristics on...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Brenner; Ann-Christine Link; Saeed A. Khan; Christoph Reudenbach; Joerg Bendix; Max Kutzinski; Barbara C. Weckler; Hendrik Pott; Jan Rupp; Martin Witzenrath; Gernot Rohde; Mathias W. Pletz; Wilhelm Bertrams; Bernd Schmeck (2024). Table 1_Impact of comorbidities and personal characteristics on weather-related risk for community-acquired pneumonia.docx [Dataset]. http://doi.org/10.3389/fclim.2024.1475075.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset provided by
    Frontiers
    Authors
    Thomas Brenner; Ann-Christine Link; Saeed A. Khan; Christoph Reudenbach; Joerg Bendix; Max Kutzinski; Barbara C. Weckler; Hendrik Pott; Jan Rupp; Martin Witzenrath; Gernot Rohde; Mathias W. Pletz; Wilhelm Bertrams; Bernd Schmeck
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Community-acquired pneumonia (CAP) is one of the most frequent causes of death among infectious diseases worldwide. There is a growing concern about weather impacts on CAP. However, no studies have examined the effects of comorbidities and personal characteristics alongside the twofold impact of weather conditions (meteorological and air quality) on CAP. Our study investigates how personal characteristics (age, sex, and BMI) and comorbidities (asthma, chronic heart disease, COPD, diabetes, heart insufficiency, smoking, and tumor) and care influence the twofold compound impact of weather on CAP admissions. We match medical data from a German multicentre cohort of 10,660 CAP patients with daily regional weather data, using logistic regressions to calculate the “Pneumonia Risk Increase Factor” (PRIF). This factor quantifies the heightened risk of CAP admissions due to weather conditions. We demonstrate that individuals with specific personal characteristics and those with comorbidities are more susceptible to weather impacts in the context of CAP than their counterparts. People with COPD have a PRIF of 5.28, followed by people in care (5.23) and people with a high BMI (4.02). Air pollutants, particularly CO and PM2.5, play a significant role in increasing CAP hospitalizations. For meteorological conditions, air pressure and lower temperatures, combined with air pollutants, lead to high PRIFs. Our findings emphasize the increased weather vulnerability of old, high BMI, and males and people with comorbidities. This provides invaluable information to support at-risk individuals through protective measures and provides healthcare providers as well as health policymakers with insights for resource planning before and during pneumonia-contributing weather conditions.

  17. f

    DataSheet_1_Statistical Analysis and Machine Learning Prediction of Disease...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Zhao; Rusen Zhang; Yi Zhong; Jingjing Wang; Zuquan Weng; Heng Luo; Cunrong Chen (2023). DataSheet_1_Statistical Analysis and Machine Learning Prediction of Disease Outcomes for COVID-19 and Pneumonia Patients.xlsx [Dataset]. http://doi.org/10.3389/fcimb.2022.838749.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Yu Zhao; Rusen Zhang; Yi Zhong; Jingjing Wang; Zuquan Weng; Heng Luo; Cunrong Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Coronavirus Disease 2019 (COVID-19) has spread all over the world and impacted many people’s lives. The characteristics of COVID-19 and other types of pneumonia have both similarities and differences, which confused doctors initially to separate and understand them. Here we presented a retrospective analysis for both COVID-19 and other types of pneumonia by combining the COVID-19 clinical data, eICU and MIMIC-III databases. Machine learning models, including logistic regression, random forest, XGBoost and deep learning neural networks, were developed to predict the severity of COVID-19 infections as well as the mortality of pneumonia patients in intensive care units (ICU). Statistical analysis and feature interpretation, including the analysis of two-level attention mechanisms on both temporal and non-temporal features, were utilized to understand the associations between different clinical variables and disease outcomes. For the COVID-19 data, the XGBoost model obtained the best performance on the test set (AUROC = 1.000 and AUPRC = 0.833). On the MIMIC-III and eICU pneumonia datasets, our deep learning model (Bi-LSTM_Attn) was able to identify clinical variables associated with death of pneumonia patients (AUROC = 0.924 and AUPRC = 0.802 for 24-hour observation window and 12-hour prediction window). The results highlighted clinical indicators, such as the lymphocyte counts, that may help the doctors to predict the disease progression and outcomes for both COVID-19 and other types of pneumonia.

  18. ARCHIVED - Weekly COVID-19 Statistical Data in Scotland

    • find.data.gov.scot
    • dtechtive.com
    csv
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health Scotland (2022). ARCHIVED - Weekly COVID-19 Statistical Data in Scotland [Dataset]. https://find.data.gov.scot/datasets/19628
    Explore at:
    csv(0.0537 MB), csv(0.0304 MB), csv(0.033 MB), csv(0.0002 MB), csv(0.0026 MB), csv(0.0553 MB), csv(0.0535 MB), csv(0.109 MB), csv(0.002 MB), csv(0.0016 MB), csv(0.0015 MB), csv(0.0008 MB), csv(0.0022 MB), csv(0.0038 MB), csv(0.0126 MB), csv(0.0005 MB), csv(0.0348 MB), csv(0.0192 MB), csv(0.0112 MB), csv(0.014 MB), csv(0.4845 MB), csv(0.0551 MB), csv(0.0265 MB), csv(0.1093 MB), csv(0.0729 MB), csv(0.0732 MB), csv(0.0037 MB), csv(0.0296 MB), csv(0.0317 MB)Available download formats
    Dataset updated
    Dec 22, 2022
    Dataset provided by
    Public Health Scotland
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    This open data publication has moved to COVID-19 Statistical Data in Scotland (from 02/11/2022) Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. Clinical presentation may range from mild-to-moderate illness to pneumonia or severe acute respiratory infection. This dataset provides information on demographic characteristics (age, sex, deprivation) of confirmed novel coronavirus (COVID-19) cases, as well as trend data regarding the wider impact of the virus on the healthcare system. Data includes information on primary care out of hours consultations, respiratory calls made to NHS24, contact with COVID-19 Hubs and Assessment Centres, incidents received by Scottish Ambulance Services (SAS), as well as COVID-19 related hospital admissions and admissions to ICU (Intensive Care Unit). Further data on the wider impact of the COVID-19 response, focusing on hospital admissions, unscheduled care and volume of calls to NHS24, is available on the COVID-19 Wider Impact Dashboard. There is a large amount of data being regularly published regarding COVID-19 (for example, Coronavirus in Scotland - Scottish Government and Deaths involving coronavirus in Scotland - National Records of Scotland. Additional data sources relating to this topic area are provided in the Links section of the Metadata below. Information on COVID-19, including stay at home advice for people who are self-isolating and their households, can be found on NHS Inform. All publications and supporting material to this topic area can be found in the weekly COVID-19 Statistical Report. The date of the next release can be found on our list of forthcoming publications. Data visualisation is available to view in the interactive dashboard accompanying the COVID-19 Statistical Report. Please note information on COVID-19 in children and young people of educational age, education staff and educational settings is presented in a new COVID-19 Education Surveillance dataset going forward.

  19. h

    Ventilatory strategies, medications and outcomes for patients with COVID

    • healthdatagateway.org
    unknown
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2023). Ventilatory strategies, medications and outcomes for patients with COVID [Dataset]. https://healthdatagateway.org/en/dataset/147
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Background: Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 125 million cases, and more than 2.7 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonitis, adult respiratory distress syndrome (ARDS) and death. Many patients required ventilatory support including high flow oxygen, continuous positive airway pressure and intubated with or without tracheotomy. There was considerable learning on how to manage COVID-19 during the pandemic and new drugs became available during the different waves. This secondary care COVID dataset contains granular ventilatory, demographic, morbidity, serial acuity, medications and outcome data in COVID-19 across all waves and will be continuously refreshed.

    PIONEER geography: The West Midlands (WM) has a population of 5.9 million and includes a diverse ethnic and socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day, more than 100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions across all waves.

    Electronic Health Records (EHR): University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services and specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds and 100 ITU beds. ITU capacity increased to 250 beds during the COVID pandemic. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary and secondary care record (Your Care Connected) and a patient portal “My Health”. UHB has cared for more than 10,000 COVID admissions to date.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January 2020 to the current date. The dataset includes highly granular patient demographics and co-morbidities taken from ICD-10 and SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), severity, ventilatory requirements, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed and administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support, dexamethasone, remdesivir, tocilizumab), all outcomes.

    Available supplementary data: Ambulance, 111, 999 data, synthetic data.

    Available supplementary support: Analytics, Model build, validation and refinement; A.I.; Data partner support for ETL (extract, transform and load) process, Clinical expertise, Patient and end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  20. p

    Brain stroke prediction dataset - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Brain stroke prediction dataset - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/brain-stroke-prediction-dataset
    Explore at:
    Dataset updated
    Oct 8, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functioning properly. Signs and symptoms of a stroke may include an inability to move or feel on one side of the body, problems understanding or speaking, dizziness, or loss of vision to one side. Signs and symptoms often appear soon after the stroke has occurred. If symptoms last less than one or two hours, the stroke is a transient ischemic attack (TIA), also called a mini-stroke. A hemorrhagic stroke may also be associated with a severe headache. The symptoms of a stroke can be permanent. Long-term complications may include pneumonia and loss of bladder control. The main risk factor for stroke is high blood pressure. Other risk factors include high blood cholesterol, tobacco smoking, obesity, diabetes mellitus, a previous TIA, end-stage kidney disease, and atrial fibrillation. An ischemic stroke is typically caused by blockage of a blood vessel, though there are also less common causes. A hemorrhagic stroke is caused by either bleeding directly into the brain or into the space between the brain's membranes. Bleeding may occur due to a ruptured brain aneurysm. Diagnosis is typically based on a physical exam and supported by medical imaging such as a CT scan or MRI scan. A CT scan can rule out bleeding, but may not necessarily rule out ischemia, which early on typically does not show up on a CT scan. Other tests such as an electrocardiogram (ECG) and blood tests are done to determine risk factors and rule out other possible causes. Low blood sugar may cause similar symptoms. Prevention includes decreasing risk factors, surgery to open up the arteries to the brain in those with problematic carotid narrowing, and warfarin in people with atrial fibrillation. Aspirin or statins may be recommended by physicians for prevention. A stroke or TIA often requires emergency care. An ischemic stroke, if detected within three to four and half hours, may be treatable with a medication that can break down the clot. Some hemorrhagic strokes benefit from surgery. Treatment to attempt recovery of lost function is called stroke rehabilitation, and ideally takes place in a stroke unit; however, these are not available in much of the world. Attribute Information

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-influenza-pneumonia-and-covid-19
Organization logo

Provisional Death Counts for Influenza, Pneumonia, and COVID-19

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

Search
Clear search
Close search
Google apps
Main menu