53 datasets found
  1. Provisional Death Counts for Influenza, Pneumonia, and COVID-19

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-influenza-pneumonia-and-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

  2. COVID-19 State Data

    • kaggle.com
    zip
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
    Explore at:
    zip(4501 bytes)Available download formats
    Dataset updated
    Nov 3, 2020
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  3. AQI Relation to Respiratory Death Rate

    • kaggle.com
    zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jack Smith (2025). AQI Relation to Respiratory Death Rate [Dataset]. https://www.kaggle.com/datasets/jsmith51/aqi-relation-to-respiratory-death-rate
    Explore at:
    zip(669955 bytes)Available download formats
    Dataset updated
    Mar 25, 2025
    Authors
    Jack Smith
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset explores the relationship between the Air Quality Index (AQI) and death rates from respiratory illnesses in the United States from 2000 to 2019. It includes detailed data on AQI levels, ranging from good to hazardous, alongside corresponding mortality rates caused by conditions such as asthma, chronic obstructive pulmonary disease (COPD), and pneumonia. The dataset covers counties across the entire United States, providing a geographically comprehensive analysis. By examining trends over two decades, this dataset offers valuable insights into how air quality impacts respiratory health outcomes nationwide.

  4. Deaths due to COVID-19 compared with deaths from influenza and pneumonia

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Deaths due to COVID-19 compared with deaths from influenza and pneumonia [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19comparedwithdeathsfrominfluenzaandpneumonia
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.

  5. Provisional COVID-19 Deaths by Sex and Age

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-by-sex-age-and-state
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  6. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  7. Dataset related to article "High mortality in COVID-19 patients with mild...

    • zenodo.org
    • data.niaid.nih.gov
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chiara Masetti; Elena Generali; Francesca Colapietro; Antonio Voza; Maurizio Cecconi; Antonio Messina; Paolo Omodei; Claudio Angelini; Michele Ciccarelli; Salvatore Badalamenti; Giorgio Walter Canonica; Giorgio Walter Canonica; Ana Lleo; Ana Lleo; Alessio Aghemo; Alessio Aghemo; the Humanitas Covid-19 Task Force; Chiara Masetti; Elena Generali; Francesca Colapietro; Antonio Voza; Maurizio Cecconi; Antonio Messina; Paolo Omodei; Claudio Angelini; Michele Ciccarelli; Salvatore Badalamenti; the Humanitas Covid-19 Task Force (2021). Dataset related to article "High mortality in COVID-19 patients with mild respiratory disease " [Dataset]. http://doi.org/10.5281/zenodo.4774885
    Explore at:
    Dataset updated
    May 20, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Chiara Masetti; Elena Generali; Francesca Colapietro; Antonio Voza; Maurizio Cecconi; Antonio Messina; Paolo Omodei; Claudio Angelini; Michele Ciccarelli; Salvatore Badalamenti; Giorgio Walter Canonica; Giorgio Walter Canonica; Ana Lleo; Ana Lleo; Alessio Aghemo; Alessio Aghemo; the Humanitas Covid-19 Task Force; Chiara Masetti; Elena Generali; Francesca Colapietro; Antonio Voza; Maurizio Cecconi; Antonio Messina; Paolo Omodei; Claudio Angelini; Michele Ciccarelli; Salvatore Badalamenti; the Humanitas Covid-19 Task Force
    Description

    This record contains raw data related to article "High mortality in COVID-19 patients with mild respiratory disease"

    Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 189 000 people in Italy, with more than 25 000 deaths. Several predictive factors of mortality have been identified; however, none has been validated in patients presenting with mild disease.

    Methods: Patients with a diagnosis of interstitial pneumonia caused by SARS-CoV-2, presenting with mild symptoms, and requiring hospitalization in a non-intensive care unit with known discharge status were prospectively collected and retrospectively analysed. Demographical, clinical and biochemical parameters were recorded, as need for non-invasive mechanical ventilation and admission in intensive care unit. Univariate and multivariate logistic regression analyses were used to identify independent predictors of death.

    Results: Between 28 February and 10 April 2020, 229 consecutive patients were included in the study cohort; the majority were males with a mean age of 60 years. 54% of patients had at least one comorbidity, with hypertension being the most commonly represented, followed by diabetes mellitus. 196 patients were discharged after a mean of 9 days, while 14.4% died during hospitalization because of respiratory failure. Age higher than 75 years, low platelet count (<150 × 103 /mm3 ) and higher ferritin levels (>750 ng/mL) were independent predictors of death. Comorbidities were not independently associated with in-hospital mortality.

    Conclusions: In-hospital mortality of patients with COVID-19 presenting with mild symptoms is high and is associated with older age, platelet count and ferritin levels. Identifying early predictors of outcome can be useful in the clinical practice to better stratify and manage patients with COVID-19.

  8. C

    California Hospital Inpatient Mortality Rates and Quality Ratings

    • data.chhs.ca.gov
    • data.ca.gov
    • +5more
    csv, pdf, xls, zip
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). California Hospital Inpatient Mortality Rates and Quality Ratings [Dataset]. https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings
    Explore at:
    pdf(306372), pdf, xls(143872), pdf(134270), pdf(83317), pdf(445171), pdf(700782), pdf(280571), pdf(419645), xls(214016), xls(165376), csv(3189182), xls, pdf(451935), pdf(253971), pdf(791847), pdf(150793), xls(141824), xls(166400), xls(163840), pdf(1235022), xls(172032), pdf(713960), pdf(363570), pdf(798633), pdf(538945), pdf(100994), pdf(288823), pdf(452858), pdf(146736), pdf(114573), pdf(264343), pdf(730246), pdf(238223), pdf(796065), pdf(254426), pdf(729792), pdf(239000), pdf(321071), pdf(147517), csv(6740988), zipAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 3 procedures performed (Carotid Endarterectomy, Pancreatic Resection, and Percutaneous Coronary Intervention) in California hospitals. The 2023 IMIs were generated using AHRQ Version 2024, while previous years' IMIs were generated with older versions of AHRQ software (2022 IMIs by Version 2023, 2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96

  9. Child and Infant Mortality

    • kaggle.com
    Updated Aug 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hrterhrter (2022). Child and Infant Mortality [Dataset]. https://www.kaggle.com/datasets/programmerrdai/child-and-infant-mortality
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 21, 2022
    Dataset provided by
    Kaggle
    Authors
    hrterhrter
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    One in every 100 children dies before completing one year of life. Around 68 percent of infant mortality is attributed to deaths of children before completing 1 month. 15,000 children die every day – Child mortality is an everyday tragedy of enormous scale that rarely makes the headlines Child mortality rates have declined in all world regions, but the world is not on track to reach the Sustainable Development Goal for child mortality Before the Modern Revolution child mortality was very high in all societies that we have knowledge of – a quarter of all children died in the first year of life, almost half died before reaching the end of puberty Over the last two centuries all countries in the world have made very rapid progress against child mortality. From 1800 to 1950 global mortality has halved from around 43% to 22.5%. Since 1950 the mortality rate has declined five-fold to 4.5% in 2015. All countries in the world have benefitted from this progress In the past it was very common for parents to see children die, because both, child mortality rates and fertility rates were very high. In Europe in the mid 18th century parents lost on average between 3 and 4 of their children Based on this overview we are asking where the world is today – where are children dying and what are they dying from?

    5.4 million children died in 2017 – Where did these children die? Pneumonia is the most common cause of death, preterm births and neonatal disorders is second, and diarrheal diseases are third – What are children today dying from? This is the basis for answering the question what can we do to make further progress against child mortality? We will extend this entry over the course of 2020.

    @article{owidchildmortality, author = {Max Roser, Hannah Ritchie and Bernadeta Dadonaite}, title = {Child and Infant Mortality}, journal = {Our World in Data}, year = {2013}, note = {https://ourworldindata.org/child-mortality} }

  10. Flu vaccines availability data

    • kaggle.com
    zip
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmirHosein Mousavian (2023). Flu vaccines availability data [Dataset]. https://www.kaggle.com/datasets/amirhoseinmousavian/flu-vaccines-availability-data
    Explore at:
    zip(3668 bytes)Available download formats
    Dataset updated
    Nov 28, 2023
    Authors
    AmirHosein Mousavian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The flu is estimated to cause 400,000 respiratory deaths each year on average across the world. These deaths come from pneumonia and other respiratory symptoms caused by the flu. People also die from other complications of the flu – such as a stroke or heart attack – but global estimates have not been made of their death toll. The Spanish flu caused the largest influenza pandemic in history. Yet, data on the flu is limited. With better testing, countries could improve their response to flu epidemics. It could help to rapidly identify new strains, detect epidemics early, and design better-matched vaccines to target flu strains circulating in the population.

    this data set contains the vaccine coverage around the world from 2018 to 2022.

  11. h

    An NIHR Birmingham BRC dataset of Community-Acquired Pneumonia in Older...

    • healthdatagateway.org
    unknown
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). An NIHR Birmingham BRC dataset of Community-Acquired Pneumonia in Older Adults [Dataset]. https://healthdatagateway.org/dataset/1013
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Community acquired pneumonia (CAP) is a leading cause of hospital admission and has high rates of mortality and complications, especially in older people. Data from PIONEER examining CAP admissions in winter 19/20 and winter 20/21 demonstrated that hospital admissions due to CAP fell by 40% in 20/21 compared to 19/20 but the 30-day mortality rate almost doubled in winter 20/21 compared to 19/20. Frailty was thought to be a determinant of poor outcomes.

    To explore this further, PIONEER, working with the NIHR Midlands Biomedical Research Centre Infections and acute care theme, have curated a highly granular dataset of 1,701 community acquired pneumonia admissions for a focused cohort of adults aged 65 years old and over. The data includes demography, comorbidities, Charlson comorbidity index, Manchester mobility score (MMS), clinical frailty score (CFS) and symptoms on presentation, serial physiology and acuity, investigations, CURB-65 assessments, intensive care, treatments (drug, dose, route), diagnostic codes (ICD-10 & SNOMED-CT), outcomes (death and readmissions).

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  12. h

    HDRUK Medicine dataset: Digoxin repurposing as a senolytic in pneumonia

    • healthdatagateway.org
    unknown
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). HDRUK Medicine dataset: Digoxin repurposing as a senolytic in pneumonia [Dataset]. https://healthdatagateway.org/dataset/943
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Nov 4, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Senescence is defined as a deterioration of function with age. Senolytic drugs clear senescent (ageing) cells from the body and reduce inflammation. These, and other geroprotector drugs are of increasing interest in preventing or reducing the negative effects of ageing on organs, tissues and cells. Digoxin is a drug commonly used to control atrial fibrillation. Animal models suggest digoxin is a senolytic. If digoxin was used as a senolytic, it would be a repurposed use of the drug, where digoxin is used for another indication rather than the one it is commonly prescribed for.

    Community acquired pneumonia (CAP) is a common cause of hospitalisation in older adults and is increasingly recognised as a severe consequence of senescence. There is some evidence to suggest people on digoxin are protected from severe consequences of CAP.

    PIONEER, working with HDRUK Medicines programme, have curated a highly granular dataset of 63,664 CAP admissions. The data includes demography, comorbidities, presenting symptoms, serial physiology, investigations, medications and outcomes. It focuses on a cohort who are and are not taking digoxin.

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment (TRE) build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  13. d

    SHIP Annual Season Influenza Vaccinations 2011-2021

    • catalog.data.gov
    • opendata.maryland.gov
    • +1more
    Updated Aug 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2024). SHIP Annual Season Influenza Vaccinations 2011-2021 [Dataset]. https://catalog.data.gov/dataset/ship-annual-season-influenza-vaccinations-2011-2017
    Explore at:
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    opendata.maryland.gov
    Description

    This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024 Annual Season Influenza Vaccinations - This indicator shows the percentage of adults who are vaccinated annually against seasonal influenza. For many people, the seasonal flu is a mild illness, but for some it can lead to pneumonia, hospitalization, or death. Vaccination of persons in high-risk populations is especially important to reduce their risk of severe illness or death. Link to Data Details

  14. h

    Ventilatory strategies and outcomes for patients with COVID: a dataset in...

    • healthdatagateway.org
    unknown
    Updated Dec 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2020). Ventilatory strategies and outcomes for patients with COVID: a dataset in OMOP [Dataset]. https://healthdatagateway.org/dataset/142
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Dec 23, 2020
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Background. Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonitis, adult respiratory distress syndrome (ARDS) & death. Many patients required ventilatory support including high flow oxygen, continuous positive airway pressure and intubated with or without tracheotomy. Different centres took different approaches to care delivery depending on ITU bed availability. This secondary care COVID OMOP dataset contains granular ventilatory, demographic, morbidity, serial acuity and outcome data in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. ITU capacity increased to 250 beds during the COVID pandemic. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This data is in the OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – September 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), severity, ventilatory requirements, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: More extensive data including wave 2 patients in non-OMOP form. Ambulance, 111, 999 data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  15. h

    A NIHR Birmingham BRC Dataset: Hospital Acquired Pneumonia & Antimicrobial...

    • healthdatagateway.org
    unknown
    Updated Oct 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). A NIHR Birmingham BRC Dataset: Hospital Acquired Pneumonia & Antimicrobial Use [Dataset]. https://healthdatagateway.org/en/dataset/934
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 31, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Hospital Associated Pneumonia (HAP) is a common healthcare associated infection, thought to affect 1-2% of all UK hospital admissions. Patients with HAP are more likely to need intensive care support and have increased length of stay and mortality rates. Unlike in community-acquired pneumonia, tools to stratify risk or severity are lacking. While there is some understanding of risk-factors that predispose people to HAP, prognostic factors are less well defined.  Treatment guidelines suggest broad spectrum antibiotics but there is little understanding of the causative organisms which cause HAP. 

    ​To explore HAP, PIONEER, with the NIHR Birmingham BRC Infection and Acute Care theme, have curated a highly granular dataset of 22,580 hospital acquired pneumonia spells. The data includes demography, co-morbidities including Charlson comorbidity index, symptoms, serial physiology and acuity, investigations including microbiology, imaging, medications (dose and route), ward locations including intensive care details and outcomes. The current dataset includes admissions from 01-01-2018 to 31-12-2022 but can be expanded to assess other timelines of interest.

    Geography: The West Midlands (WM) has a population of 6 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.

    Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in OMOP and other common data models and can build synthetic data to meet bespoke requirements.

    Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment (TRE) build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.

  16. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  17. DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC...

    • data.cityofnewyork.us
    • catalog.data.gov
    csv, xlsx, xml
    Updated Jun 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2021). DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC hospitals for Covid-19 like Illness [Dataset]. https://data.cityofnewyork.us/dataset/DOHMH-Covid-19-Milestone-Data-Daily-Number-of-Peop/sj3k-gzyx
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jun 15, 2021
    Dataset provided by
    New York City Department of Health and Mental Hygienehttps://nyc.gov/health
    Authors
    Department of Health and Mental Hygiene (DOHMH)
    Area covered
    New York
    Description

    This dataset shows the number of hospital admissions for influenza-like illness, pneumonia, or include ICD-10-CM code (U07.1) for 2019 novel coronavirus. Influenza-like illness is defined as a mention of either: fever and cough, fever and sore throat, fever and shortness of breath or difficulty breathing, or influenza. Patients whose ICD-10-CM code was subsequently assigned with only an ICD-10-CM code for influenza are excluded. Pneumonia is defined as mention or diagnosis of pneumonia. Baseline data represents the average number of people with COVID-19-like illness who are admitted to the hospital during this time of year based on historical counts. The average is based on the daily avg from the rolling same week (same day +/- 3 days) from the prior 3 years. Percent change data represents the change in count of people admitted compared to the previous day. Data sources include all hospital admissions from emergency department visits in NYC. Data are collected electronically and transmitted to the NYC Health Department hourly. This dataset is updated daily. All identifying health information is excluded from the dataset.

  18. h

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes...

    • healthdatagateway.org
    unknown
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/139
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  19. f

    Diarrhea, Pneumonia, and Infectious Disease Mortality in Children Aged 5 to...

    • figshare.com
    • plos.figshare.com
    doc
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaun K. Morris; Diego G. Bassani; Shally Awasthi; Rajesh Kumar; Anita Shet; Wilson Suraweera; Prabhat Jha (2016). Diarrhea, Pneumonia, and Infectious Disease Mortality in Children Aged 5 to 14 Years in India [Dataset]. http://doi.org/10.1371/journal.pone.0020119
    Explore at:
    docAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    PLOS ONE
    Authors
    Shaun K. Morris; Diego G. Bassani; Shally Awasthi; Rajesh Kumar; Anita Shet; Wilson Suraweera; Prabhat Jha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    BackgroundLittle is known about the causes of death in children in India after age five years. The objective of this study is to provide the first ever direct national and sub-national estimates of infectious disease mortality in Indian children aged 5 to 14 years. MethodsA verbal autopsy based assessment of 3 855 deaths is children aged 5 to 14 years from a nationally representative survey of deaths occurring in 2001–03 in 1·1 million homes in India. ResultsInfectious diseases accounted for 58% of all deaths among children aged 5 to 14 years. About 18% of deaths were due to diarrheal diseases, 10% due to pneumonia, 8% due to central nervous system infections, 4% due to measles, and 12% due to other infectious diseases. Nationally, in 2005 about 59 000 and 34 000 children aged 5 to 14 years died from diarrheal diseases and pneumonia, corresponding to mortality of 24·1 and 13·9 per 100 000 respectively. Mortality was nearly 50% higher in girls than in boys for both diarrheal diseases and pneumonia. ConclusionsApproximately 60% of all deaths in this age group are due to infectious diseases and nearly half of these deaths are due to diarrheal diseases and pneumonia. Mortality in this age group from infectious diseases, and diarrhea in particular, is much higher than previously estimated.

  20. f

    Data from: The Burden and Etiology of Community-Onset Pneumonia in the Aging...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 30, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suzuki, Motoi; Abe, Masahiko; Aoshima, Masahiro; Ariyoshi, Koya; Morimoto, Konosuke; Ishifuji, Tomoko; Yaegashi, Makito; Asoh, Norichika; Hamashige, Naohisa (2015). The Burden and Etiology of Community-Onset Pneumonia in the Aging Japanese Population: A Multicenter Prospective Study [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001899562
    Explore at:
    Dataset updated
    Mar 30, 2015
    Authors
    Suzuki, Motoi; Abe, Masahiko; Aoshima, Masahiro; Ariyoshi, Koya; Morimoto, Konosuke; Ishifuji, Tomoko; Yaegashi, Makito; Asoh, Norichika; Hamashige, Naohisa
    Description

    BackgroundThe increasing burden of pneumonia in adults is an emerging health issue in the era of global population aging. This study was conducted to elucidate the burden of community-onset pneumonia (COP) and its etiologic fractions in Japan, the world’s most aged society.MethodsA multicenter prospective surveillance for COP was conducted from September 2011 to January 2013 in Japan. All pneumonia patients aged ≥15 years, including those with community-acquired pneumonia (CAP) and health care-associated pneumonia (HCAP), were enrolled at four community hospitals on four major islands. The COP burden was estimated based on the surveillance data and national statistics.ResultsA total of 1,772 COP episodes out of 932,080 hospital visits were enrolled during the surveillance. The estimated overall incidence rates of adult COP, hospitalization, and in-hospital death were 16.9 (95% confidence interval, 13.6 to 20.9), 5.3 (4.5 to 6.2), and 0.7 (0.6 to 0.8) per 1,000 person-years (PY), respectively. The incidence rates sharply increased with age; the incidence in people aged ≥85 years was 10-fold higher than that in people aged 15-64 years. The estimated annual number of adult COP cases in the entire Japanese population was 1,880,000, and 69.4% were aged ≥65 years. Aspiration-associated pneumonia (630,000) was the leading etiologic category, followed by Streptococcus pneumoniae-associated pneumonia (530,000), Haemophilus influenzae-associated pneumonia (420,000), and respiratory virus-associated pneumonia (420,000), including influenza-associated pneumonia (30,000).ConclusionsA substantial portion of the COP burden occurs among elderly members of the Japanese adult population. In addition to the introduction of effective vaccines for S. pneumoniae and influenza, multidimensional approaches are needed to reduce the pneumonia burden in an aging society.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-influenza-pneumonia-and-covid-19
Organization logo

Provisional Death Counts for Influenza, Pneumonia, and COVID-19

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

Search
Clear search
Close search
Google apps
Main menu