https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report presents newly published information on smoking including: Smoking-related hospital admissions from NHS Digital's Hospital Episode Statistics (HES). Smoking-related deaths from Office for National Statistics (ONS) mortality statistics. Prescription items used to help people stop smoking from prescribing data held by NHS Prescription Services. Affordability of tobacco and expenditure on tobacco using ONS economic data. Two new years of data have been provided for hospital admissions (2018/19 and 2019/20) and deaths (2018 and 2019) and one year of data for prescribing (2018/19) and affordability and expenditure (2019). The report also provides links to information on smoking by adults and children drawn together from a variety of sources. Key facts cover the latest year of data available: Hospital admissions: 2019/20 Deaths: 2019 Prescriptions: 2019/20
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/67fe79e3393a986ec5cf8dbe/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 126 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/67fe79fbed87b81608546745/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.56 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/67fe7a20694d57c6b1cf8db0/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 156 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/67fe7a40ed87b81608546746/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 331 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/67fe7a5f393a986ec5cf8dc0/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attachm
The smoking prevalence in the United States was forecast to continuously decrease between 2024 and 2029 by in total two percentage points. After the eighth consecutive decreasing year, the smoking prevalence is estimated to reach 19.93 percent and therefore a new minimum in 2029. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke on a daily basis. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the smoking prevalence in countries like Canada and Mexico.
U.S. Department of Health and Human Services (HHS). Centers for Disease Control and Prevention (CDC). Healthy People 2020 Tobacco Use Objectives. Healthy People 2020. Healthy People 2020 provides a framework for action to reduce tobacco use to the point that it is no longer a public health problem for the Nation. This dataset includes information related to the Healthy People 2020 Tobacco Use objectives, operational definitions, baselines, and targets. Baseline years may vary by objective. Targets represented correspond to the year 2020.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on the proportion of adults in Great Britain who smoke cigarettes, cigarette consumption, the proportion who have never smoked cigarettes and the proportion of smokers who have quit by sex and age over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains statistical data on the percentage of people affected by secondhand smoking, categorized by gender and type of exposure.
This dataset contains three smoking related indicators.
Smoking quit rates per 100,000 available from the HNA.
- These quarterly reports present provisional results from the monitoring of the NHS Stop Smoking Services (NHS SSS) in England. This report includes information on the number of people setting a quit date and the number who successfully quit at the 4 week follow-up. Data for London presented with England comparator. PCT level data available from NHS.
Deaths attributable to smoking, directly age-sex standardised rate for persons aged 35 years +. Causes of death considered to be related to smoking are: various cancers, cardiovascular and respiratory diseases, and diseases of the digestive system.
Prevalence of smoking among persons aged 18 years and over.
- Population who currently smoke, are ex-smokers, or never smoked by borough. This includes cigarette, cigar or pipe smokers. Data by age is also provided for London with a UK comparator.
Relevant links: http://www.hscic.gov.uk/Article/1685
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive
, death
and totalTestResults
from the API for, respectively, Infected
, Deaths
and Tested
in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
--- Original source retains full ownership of the source dataset ---
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows the percentage of adults (age 18 and over) who are current smokers. Smoking is the single biggest cause of preventable death and illnesses, and big inequalities exist between and within communities. Smoking is a major risk factor for many diseases, such as lung cancer, chronic obstructive pulmonary disease (COPD, bronchitis and emphysema) and heart disease. It is also associated with cancers in other organs. Smoking is a modifiable lifestyle risk factor. Preventing people from starting smoking is important in reducing the health harms and inequalities. This data is based on the Office for National Statistics (ONS) Annual Population Survey (APS). The percentage of adults is not age-standardised. In this dataset particularly at district level there may be inherent statistical uncertainty in some data values. Thus as with many other datasets, this data should be used together with other data and resources to obtain a fuller picture. Data source: Office for Health Improvement and Disparities (OHID) Public Health Outcomes Framework (PHOF) indicator 92443 (Number 15). This data is updated annually.
The global number of smokers in was forecast to continuously increase between 2024 and 2029 by in total 13.9 million individuals (+1.29 percent). After the eleventh consecutive increasing year, the number of smokers is estimated to reach 1.1 billion individuals and therefore a new peak in 2029. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco, be it on a daily or non-daily basis.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smokers in countries like Caribbean and Africa.
https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms
The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used
Comparing the 126 selected regions regarding the smoking prevalence , Myanmar is leading the ranking (42.49 percent) and is followed by Serbia with 39.33 percent. At the other end of the spectrum is Ghana with 3.14 percent, indicating a difference of 39.35 percentage points to Myanmar. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke on a daily basis. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset combines multiple open data sets for Covid-19 cases and deaths (kaggle1), Death causes (ourworldindata1, ourworldindata2, ourworldindata3, Food sources (FAO1), Health Care System (WHO1, WHO2, WHO3), TB vaccine status (BCG1) School closures (UNESCO1), and People/Society facts (CIA1).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows the percentage of adults (age 18 and over) who are current smokers.
Smoking is the single biggest cause of preventable death and illnesses, and big inequalities exist between and within communities. Smoking is a major risk factor for many diseases, such as lung cancer, chronic obstructive pulmonary disease (COPD, bronchitis and emphysema) and heart disease. It is also associated with cancers in other organs.
Smoking is a modifiable lifestyle risk factor. Preventing people from starting smoking is important in reducing the health harms and inequalities.
This data is based on the Office for National Statistics (ONS) Annual Population Survey (APS). The percentage of adults is not age-standardised. In this dataset particularly at district level there may be inherent statistical uncertainty in some data values. Thus as with many other datasets, this data should be used together with other data and resources to obtain a fuller picture.
Data source: Public Health England, Public Health Outcomes Framework (PHOF) indicator 92443 (Number 15). This data is updated annually.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains 523 human feedback messages sent to daily smokers and vapers who were preparing to quit smoking/vaping with a virtual coach.
Study
Daily smokers and vapers recruited through the online crowdsourcing platform Prolific interacted with the text-based virtual coach Kai in up to five sessions between 1 February and 19 March 2024. The sessions were 3-5 days apart. In each session, participants were assigned a new preparatory activity for quitting smoking (e.g., listing reasons for quitting smoking, envisioning one's desired future self after quitting smoking, doing a breathing exercise). Between sessions, participants had a 20% chance of receiving a feedback message from one of two human coaches. More information on the study can be found in the Open Science Framework (OSF) pre-registration: https://doi.org/10.17605/OSF.IO/78CNR. The implementation of the virtual coach Kai can be found here: https://doi.org/10.5281/zenodo.11102861.
Feedback messages
All feedback messages were written by one of two Master's students in psychology. The two human coaches were directed to craft messages incorporating feedback, argument, and either a suggestion or reinforcement. They were also instructed to connect with individuals by referencing aspects of their lives, express empathy toward those with low confidence, and provide reinforcement when people were motivated.
When writing the feedback, the human coaches had access to data on people's baseline smoking and physical activity behavior (i.e., smoking/vaping frequency, weekly exercise amount, existence of previous quit attempts of at least 24 hours, and the number of such quit attempts in the last year), introduction texts from the first session with the virtual coach, previous preparatory activity (i.e., activity formulation, effort spent on the activity and experience with it, return likelihood), current state (i.e., self-efficacy, perceived importance of preparing for quitting, human feedback appreciation), and new activity formulation. Notably, the human coaches only had access to anonymized versions of the introduction texts and activity experience responses (e.g., names were removed). Except for the free-text responses describing participants' experiences with their previous activity and their introduction texts, all of this information is provided together with the feedback messages. For the previous and new activities, we just provide the titles and not also the entire formulations that the human coaches had access to.
Before sending the messages to participants on Prolific, we added a greeting (i.e., "Best wishes, Karina & Goda on behalf of the Perfect Fit Smoking Cessation Team"), a disclaimer that the messages were not medical advice, and a link to confirm having read the message at the end. We also added "This is your feedback message from your human coaches Karina and Goda for preparing to quit [smoking/vaping]:" at the start of the message.
The human coaches approved publishing these feedback messages.
Additional data from the study
Additional data from the study such as participants' free-text descriptions of their experiences with their activities and their introductions from the first session with the virtual coach will also be published and linked to the OSF pre-registration of the study.
In the case of questions, please contact Nele Albers (n.albers@tudelft.nl) or Willem-Paul Brinkman (w.p.brinkman@tudelft.nl).
Healthy People 2020 dataset provides a framework for action to reduce tobacco use to the point that it is no longer a public health problem for the Nation. This dataset includes information related to the Healthy People 2020 Tobacco Use objectives, operational definitions, baselines, and targets. Baseline years may vary by objective. Targets represented correspond to the year 2020.
Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Healthy People 2020 Tobacco Use Objectives’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/98fa8403-74e0-444c-b71d-7528fdf59d34 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
U.S. Department of Health and Human Services (HHS). Centers for Disease Control and Prevention (CDC). Healthy People 2020 Tobacco Use Objectives. Healthy People 2020. Healthy People 2020 provides a framework for action to reduce tobacco use to the point that it is no longer a public health problem for the Nation. This dataset includes information related to the Healthy People 2020 Tobacco Use objectives, operational definitions, baselines, and targets. Baseline years may vary by objective. Targets represented correspond to the year 2020.
--- Original source retains full ownership of the source dataset ---
https://www.icpsr.umich.edu/web/ICPSR/studies/36498/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36498/terms
The Population Assessment of Tobacco and Health (PATH) Study began originally surveying 45,971 adult and youth respondents. The PATH Study was launched in 2011 to inform Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the civilian, noninstitutionalized population at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort.Dataset 0001 (DS0001) contains the data from the Master Linkage file. This file contains 14 variables and 67,276 cases. The file provides a master list of every person's unique identification number and what type of respondent they were for each wave. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This second replenishment sample was combined for estimation and analysis purposes with Wave 7 adult and youth respondents from the Wave 4 Cohort who were at least age 15 and in the civilian, noninstitutionalized population at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Public-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts.Dataset 1001 (DS1001) contains the data from the Wave 1 Adult Questionnaire. This data file contains 1,732 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1002 (DS1002) contains the data from the Youth and Parent Questionnaire. This file contains 1,228 variables and 13,651 cases.Dataset 2001 (DS2001) contains the data from the Wave 2 Adult Questionnaire. This data file contains 2,197 variables and 28,362 cases. Of these cases, 26,447 also completed a Wave 1 Adult Questionnaire. The other 1,915 cases are "aged-up adults" having previously completed a Wave 1 Youth Questionnaire. Dataset 2002 (DS2002) contains the data from the Wave 2 Youth and Parent Questionnaire. This data file contains 1,389 variables and 12,172 cases. Of these cases, 10,081 also completed a Wave 1 Youth Questionnaire. The other 2,091 cases are "aged-up youth" having previously been sampled as "shadow youth." Dataset 3001 (DS3001) contains the data from the Wave 3 Adult Questionnaire. This data file contains 2,139 variables and 28,148 cases. Of these cases, 26,241 are continuing adults having completed a prior Adult Questionnaire. The other 1,907 cases are "aged-up adults" having previously completed a Youth Questionnaire. Dataset 3002 (DS3002) contains the data from t
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on the proportion of adults in Great Britain who use e-cigarettes, by different characteristics such as age, sex and cigarette smoking status.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report presents newly published information on smoking including: Smoking-related hospital admissions from NHS Digital's Hospital Episode Statistics (HES). Smoking-related deaths from Office for National Statistics (ONS) mortality statistics. Prescription items used to help people stop smoking from prescribing data held by NHS Prescription Services. Affordability of tobacco and expenditure on tobacco using ONS economic data. Two new years of data have been provided for hospital admissions (2018/19 and 2019/20) and deaths (2018 and 2019) and one year of data for prescribing (2018/19) and affordability and expenditure (2019). The report also provides links to information on smoking by adults and children drawn together from a variety of sources. Key facts cover the latest year of data available: Hospital admissions: 2019/20 Deaths: 2019 Prescriptions: 2019/20