88 datasets found
  1. T

    CORONAVIRUS DEATHS by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). CORONAVIRUS DEATHS by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths?continent=europe
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  2. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +3more
    csv, docx, xlsx
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, xlsxAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  3. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  4. Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset provided by
    data.world, Inc.
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  5. Coronavirus Worldwide Dataset

    • kaggle.com
    Updated Aug 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Raj (2020). Coronavirus Worldwide Dataset [Dataset]. https://www.kaggle.com/saurabhraj19/coronavirus-worldwide-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 11, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saurabh Raj
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    The European CDC publishes daily statistics on the COVID-19 pandemic. Not just for Europe, but for the entire world. We rely on the ECDC as they collect and harmonize data from around the world which allows us to compare what is happening in different countries.

    Content

    This dataset has daily level information on the number of affected cases, deaths and recovery etc. from coronavirus. It also contains various other parameters like average life expectancy, population density, smocking population etc. which users can find useful in further prediction that they need to make.

    The data is available from 31 Dec,2019.

    Inspiration

    Give people weekly data so that they can use it to make accurate predictions.

  6. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/67fe79e3393a986ec5cf8dbe/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 126 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/67fe79fbed87b81608546745/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.56 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/67fe7a20694d57c6b1cf8db0/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 156 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/67fe7a40ed87b81608546746/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 331 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/67fe7a5f393a986ec5cf8dc0/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attachm

  7. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  8. A

    ‘The Lost Journalists: Dataset of journalist deaths’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘The Lost Journalists: Dataset of journalist deaths’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-the-lost-journalists-dataset-of-journalist-deaths-eb66/f982f2d4/?iid=004-934&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘The Lost Journalists: Dataset of journalist deaths’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/journalist-deathse on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Credit for the original dataset goes to CPJ

    About this dataset

    In-the-News:

    https://data.world/api/journalism/dataset/journalist-deaths/file/raw/journalist_deaths_by_year.png" alt="journalist_deaths_by_year.png">

    Methodology

    CPJ began compiling detailed records on journalist deaths in 1992. We apply strict journalistic standards when investigating a death. One important aspect of our research is determining whether a death was work-related. As a result, we classify deaths as "motive confirmed" or "motive unconfirmed."

    We consider a case "confirmed" only if we are reasonably certain that a journalist was murdered in direct reprisal for his or her work; was killed in crossfire during combat situations; or was killed while carrying out a dangerous assignment such as coverage of a street protest. We do not include journalists who are killed in accidents such as car or plane crashes.

    We include only confirmed cases in the statistical analyses in this database.

    When the motive is unclear, but it is possible that a journalist was killed because of his or her work, CPJ classifies the case as "unconfirmed" and continues to investigate. We regularly reclassify cases based on our ongoing research.

    Our archives include narrative capsules of all journalists killed, including the cases in which the motive is unconfirmed. In cases where the place of death is incidental to the journalist's killing, we have listed the country where the fatal attack occurred to be the place of the journalist's death (for example, in a case where a journalist is hit by shrapnel in one country and evacuated to another, where he or she dies, CPJ lists the country in which he or she was hit as the place of death).

    CPJ defines journalists as people who cover news or comment on public affairs through any media -- including in print, in photographs, on radio, on television, and online. We take up cases involving staff journalists, freelancers, stringers, bloggers, and citizen journalists. The combination of daily reporting and statistical data forms the basis of our case-driven and long-term advocacy.

    In 2003, CPJ began documenting the deaths of media support workers. We did so in recognition of the vital role these individuals play in newsgathering. These workers include translators, drivers, fixers, and administrative workers.

    Our archives include narrative capsules for media workers killed on duty. These cases are not included our statistical analyses.

    About CPJ

    The Committee to Protect Journalists is an independent, nonprofit organization that promotes press freedom worldwide. We defend the right of journalists to report the news without fear of reprisal.

    Additional Reading
    Investigative journalism in Africa – “Walking through a minefield at midnight”
    Iraq: The deadliest war for journalists
    Being a journalist in Mexico is getting even more dangerous

    Source: Committee to Protect Journalists

    This dataset was created by Journalism, News, and Media and contains around 2000 samples along with Date, Unnamed: 18, technical information and other features such as: - Local/ Foreign - Unnamed: 20 - and more.

    How to use this dataset

    • Analyze Coverage in relation to Taken Captive
    • Study the influence of Organization on Unnamed: 21
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Journalism, News, and Media

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  9. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • ai-chatbox.pro
    Updated Apr 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  10. COVID-19 Coronavirus Complete Dataset

    • kaggle.com
    Updated Nov 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashish Ranjan (2020). COVID-19 Coronavirus Complete Dataset [Dataset]. https://www.kaggle.com/ashudata/covid19dataset/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 7, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ashish Ranjan
    Description

    Data Summary

    Data is collected from mentioned Sources, and further processed and available here in usable format. This Data is used for Exploratory data analysis ( EDA ), and for various visualizations.

    Fixes

    1. We tried to fix few major issue with data in Italy, france and spain between 11thmarch to 13th march.

    Column Description

    • Country : Affected Country
    • Date : Date of the observation in YYYY-MM-DD
    • Confirmed : Cumulative number of confirmed cases
    • Death : Cumulative number of death cases
    • Recovered : Cumulative number of recovered cases
    • newConfirmed : Number of Confirmed cases per day
    • newDeath : Number of Death cases per day
    • newRecovered : Number of Recovered cases per day

    Acknowledgements / Sources

    1. Johns Hopkins University : Fetched from GitHub Source - https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/

    2. European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

    Inspiration

    Insights like following - 1. Changes in number of Confirmed cases over time. 2. Changes in number of Death cases over time. 3. Changes in number of Recovered cases over time.

  11. T

    United States Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). United States Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/united-states/coronavirus-deaths
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 22, 2020 - May 17, 2023
    Area covered
    United States
    Description

    United States recorded 1127152 Coronavirus Deaths since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 103436829 Coronavirus Cases. This dataset includes a chart with historical data for the United States Coronavirus Deaths.

  12. Number of internet users worldwide 2014-2029

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of internet users worldwide 2014-2029 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.

  13. COVID 19 Dataset

    • kaggle.com
    zip
    Updated Aug 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rahul Gupta (2020). COVID 19 Dataset [Dataset]. https://www.kaggle.com/rahulgupta21/datahub-covid19
    Explore at:
    zip(915971 bytes)Available download formats
    Dataset updated
    Aug 24, 2020
    Authors
    Rahul Gupta
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COVID-19) is caused by the Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and has had a worldwide effect. On March 11 2020, the World Health Organization (WHO) declared it a pandemic, pointing to the over 118,000 cases of the Coronavirus illness in over 110 countries and territories around the world at the time.

    This dataset includes time series data tracking the number of people affected by COVID-19 worldwide, including:

    confirmed tested cases of Coronavirus infection the number of people who have reportedly died while sick with Coronavirus the number of people who have reportedly recovered from it

    Content

    Data is in CSV format and updated daily. It is sourced from this upstream repository maintained by the amazing team at Johns Hopkins University Center for Systems Science and Engineering (CSSE) who have been doing a great public service from an early point by collating data from around the world.

    We have cleaned and normalized that data, for example tidying dates and consolidating several files into normalized time series. We have also added some metadata such as column descriptions and data packaged it.

  14. g

    Coronavirus (Covid19) — Evolution by country and around the world (daily...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus (Covid19) — Evolution by country and around the world (daily maj) [Dataset]. https://gimi9.com/dataset/eu_5e5da8356f44412b1755a8f6/
    Explore at:
    Area covered
    World
    Description

    [Edit 12/09/2020] You will now find in the files below the last 30 days, too many people do not respect the request not to recover too often the dataset (no interest in recovering every minute while the file changes 4 or 5 times a day) If you want access to the entire history, contact me [Edit 31/03/2020] Since yesterday, I made sure to have the data of the day since the ESSC, so the data of the same day are now available and updated several times a day (about every hour) as the new figures fall all over the world. The data of the previous day is always consolidated around 2am (it is no longer 1h since the time change). If you only want to have the complete data, just don't take into account the last day (today’s date) Here I share the data that I compile with the famous coronavirus infection world map created and maintained by The Johns Hopkins University and which serve me to display ** CoronaVirus statistics worldwide and by country** They share the day’s data each night on a GitHub deposit. My tools compile this new data as soon as they are available and I share the result here. This data is used to display tables and graphs on the CoronaVirus website (Covid19) of Politologue.com https://coronavirus.politologue.com/ This data will allow you to make your own graphs and analyses if you look at the subject. I do not oblige you to do it, but if my compilation allows you to do something about it and saved you time, a link to https://coronavirus.politologue.com/ will be appreciable. Information in files (csv and json) — Number of cases — Number of deaths — Number of healing — Death rate (percentage) — Healing rate (percentage) — Infection rate (persons still infected, not deceased or cured) (percentage) — And for data by country, you will find a field “country” If you integrate the client-side json or csv on a site or application, please keep a cache on your servers without risking an unexpected load on my servers. Coronavirus evolution

  15. COVID-19 transmission periods per week per country

    • kaggle.com
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dmitry A. Grechka (2020). COVID-19 transmission periods per week per country [Dataset]. https://www.kaggle.com/dgrechka/covid19-transmission-periods-per-week-per-country/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dmitry A. Grechka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    This dataset is created as a part of covid-19 global forecasting challenge. It contains parameters for the SIR model for different locations worldwide. But the main value of the dataset is estimated transmission period (average period between single infected individual infects next susceptible in pure susceptible population) per week per location.

    The model is defined as ODE system as follows: https://wikimedia.org/api/rest_v1/media/math/render/svg/29728a7d4bebe8197dca7d873d81b9dce954522e" alt="SIR ODE equations">

    In order to reflect the transmission rate changes caused by spread constraining measures (social distancing, etc.) the Beta parameter is modelled separately as spline model (spline node estimate for every week). See paramsWeekly.csv which holds the Beta parameter values for every week as well as estimated R0 values (derived from Beta and Gamma paramters) for every week.

    The models are fitted on John Hopkins University data (time series) using several runs of Nelder-Mead simplex optimization method (best run is taken) starting at different initial locations and RMSE as a loss.

    What parameters are fitted (estimated) per country/province: * the day when the infection emerged in the country * the initial infected count on the first day of the infection * beta (separate value for every week) - an average number of contacts (sufficient to spread the disease) per day each infected individual has * gamma - fixed fraction of the infected group that will recover during any given day * R0 - Equals beta/gamma

    How to read the figures. * points are real observed data provided by Johns Hopkins University * curves are model prediction

    • blue is susceptible population - people that are not yet infected but can get the infection
    • red is infected population
    • green is removed population (recovered or dead). people that are not susceptible any more as they came through the infection.

    Content

    The dataset contains 3 data portions:

    1. Fitted SIR model parameters for different locations worldwide. a. Params.csv - parameters (and derived values) constant over time b. ParamsWeekly.csv - parameters (and derived values) that are estimated for every week separatly
    2. Figures directory that visually show how the fitted parameters match the data points.
    3. Predictions directory with CSV files with prediction for one year in the future for each individual location.

    Warning

    Always do visual check of the model fit (Figures directory) for quality control before start to use the corresponding parameter values in your analysis, as the dataset is obtained by automatic fitting procedure without manual quality control.

    Acknowledgements

    Thanks a lot Kaggle for organizing data sharing and challenges that make the world better.

    Also many thanks to John Hopkins University for their hard work of gathering COVID-19 statistics worldwide.

    Inspiration

    You can try to find correlation between model parameters (e.g. gamma - patient recovery rate) and other properties of the modelled locations worldwide (e.g. weather, population density, level of medical care, etc.)

  16. Daily United States COVID-19 Testing and Outcomes Data By State, March 7,...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, csv
    Updated Jun 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project at The Atlantic; The COVID Tracking Project at The Atlantic (2022). Daily United States COVID-19 Testing and Outcomes Data By State, March 7, 2020 to March 7, 2021 [Dataset]. http://doi.org/10.5061/dryad.9kd51c5hk
    Explore at:
    bin, csvAvailable download formats
    Dataset updated
    Jun 4, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    The COVID Tracking Project at The Atlantic; The COVID Tracking Project at The Atlantic
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The COVID Tracking Project was a volunteer organization launched from The Atlantic and dedicated to collecting and publishing the data required to understand the COVID-19 outbreak in the United States. Our dataset was in use by national and local news organizations across the United States and by research projects and agencies worldwide.

    Every day, we collected data on COVID-19 testing and patient outcomes from all 50 states, 5 territories, and the District of Columbia by visiting official public health websites for those jurisdictions and entering reported values in a spreadsheet. The files in this dataset represent the entirety of our COVID-19 testing and outcomes data collection from March 7, 2020 to March 7, 2021. This dataset includes official values reported by each state on each day of antigen, antibody, and PCR test result totals; the total number of probable and confirmed cases of COVID-19; the number of people currently hospitalized, in intensive care, and on a ventilator; the total number of confirmed and probable COVID-19 deaths; and more.

  17. Covid19 Dataset (Worldwide cases 2019-20)

    • kaggle.com
    zip
    Updated Dec 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vivekkumar Gediya (2020). Covid19 Dataset (Worldwide cases 2019-20) [Dataset]. https://www.kaggle.com/vivekgediya/covid19-case-worldwide-cases-till-30th-dec20
    Explore at:
    zip(327132 bytes)Available download formats
    Dataset updated
    Dec 31, 2020
    Authors
    Vivekkumar Gediya
    Description

    Context

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content 2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020 to 30 Dec, 2020.

    Sources

    JHU confirmed covid datasets.

  18. z

    Counts of Measles reported in UNITED STATES OF AMERICA: 1888-2002

    • zenodo.org
    • data.niaid.nih.gov
    json, xml, zip
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke (2024). Counts of Measles reported in UNITED STATES OF AMERICA: 1888-2002 [Dataset]. http://doi.org/10.25337/t7/ptycho.v2.0/us.14189004
    Explore at:
    xml, json, zipAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Project Tycho
    Authors
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 15, 1888 - Dec 28, 2002
    Area covered
    United States
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.

    Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.

    Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:

    • Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported.
    • Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".

  19. w

    Global Financial Inclusion (Global Findex) Database 2011 - Afghanistan

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2015). Global Financial Inclusion (Global Findex) Database 2011 - Afghanistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/1117
    Explore at:
    Dataset updated
    Apr 15, 2015
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2011
    Area covered
    Afghanistan
    Description

    Abstract

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.

    The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

    Geographic coverage

    National Coverage.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.

    Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.

    Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.

    The sample size in Afghanistan was 1,000 individuals. Gender-matched sampling was used during the final stage of selection.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.

  20. w

    Egypt, Arab Rep. - Global Financial Inclusion (Global Findex) Database 2011...

    • wbwaterdata.org
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Egypt, Arab Rep. - Global Financial Inclusion (Global Findex) Database 2011 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/egypt-arab-rep-global-financial-inclusion-global-findex-database-2011
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Egypt
    Description

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies. The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). CORONAVIRUS DEATHS by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths?continent=europe

CORONAVIRUS DEATHS by Country in EUROPE

CORONAVIRUS DEATHS by Country in EUROPE (2025)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
xml, csv, json, excelAvailable download formats
Dataset updated
Jun 9, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2025
Area covered
Europe
Description

This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

Search
Clear search
Close search
Google apps
Main menu