Facebook
TwitterThese tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
We are proposing to make some changes to these tables in future, further details can be found alongside the latest provisional statistics.
The tables below are the latest final annual statistics for 2024, which are currently the latest available data. Provisional statistics for the first half of 2025 are also available, with provisional data for the whole of 2025 scheduled for publication in May 2026.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/6925869422424e25e6bc3105/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 28.9 KB).
https://assets.publishing.service.gov.uk/media/68d42292b6c608ff9421b2d2/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 11.2 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/68d3cdeeca266424b221b253/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 34.7 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/68d3cdfee65dc716bfb1dcf3/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 129 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/68d3ce0bc908572e81248c1f/ras0201.ods">Numbers and rates (ODS, 37.5 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/68d3ce17b6c608ff9421b25e/ras0202.ods">Sex and age group (ODS, 178 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB) - this table will be updated for 2024 once data is available for other modes.
RAS0301: https://assets.publishing.service.gov.uk/media/68d3ce2b8c739d679fb1dcf6/ras0301.ods">Speed limit, built-up and non-built-up roads (<span class="gem-c-attachmen
Facebook
TwitterThe Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly).
Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The car crash dataset provides a detailed compilation of information related to common factors influencing road accidents, such as collision severity, weather conditions, road types, and contributing elements, offering valuable insights for the analysis and enhancement of overall road safety measures.
Facebook
TwitterThe number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
Facebook
TwitterThe Measurement template document is available at the archived version of this page on the UK Government Web Archive.
In 2013:
| Year | Road accident fatalities | % change from previous year |
|---|---|---|
| 2000 | 3,409 | -0.4 |
| 2001 | 3,450 | 1.2 |
| 2002 | 3,431 | -0.6 |
| 2003 | 3,508 | 2.2 |
| 2004 | 3,221 | -8.2 |
| 2005 | 3,201 | -0.6 |
| 2006 | 3,175 | -0.9 |
| 2007 | 2,946 | -7.1 |
| 2008 | 2,538 | -13.8 |
| 2009 | 2,222 | -12.5 |
| 2010 | 1,850 | -16.7 |
| 2011 | 1,901 | 2.8 |
| 2012 | 1,754 | -7.7 |
| 2013 | 1,713 | -2.3 |
The complete set of data is available for download.
The indicator can be broken down by any geographical area (eg country, region, local authority) since a grid reference is collected for each accident. Information is also available by age, gender, type of road user and road type. Numbers will be relatively small for more detailed breakdowns of the total and may therefore fluctuate from year to year. This needs to be taken into account when assessing trends.
More detailed analysis and time series can be found in Reported road casualties Great Britain: annual report.
Record level data on accidents and casualties can be found in http://data.gov.uk/dataset/road-accidents-safety-data/">Record level data
Facebook
TwitterThe number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
Facebook
TwitterThis dataset contains information about vehicles (or units as they are identified in crash reports) involved in a traffic crash. This dataset should be used in conjunction with the traffic Crash and People dataset available in the portal. “Vehicle” information includes motor vehicle and non-motor vehicle modes of transportation, such as bicycles and pedestrians. Each mode of transportation involved in a crash is a “unit” and get one entry here. Each vehicle, each pedestrian, each motorcyclist, and each bicyclist is considered an independent unit that can have a trajectory separate from the other units. However, people inside a vehicle including the driver do not have a trajectory separate from the vehicle in which they are travelling and hence only the vehicle they are travelling in get any entry here. This type of identification of “units” is needed to determine how each movement affected the crash. Data for occupants who do not make up an independent unit, typically drivers and passengers, are available in the People table. Many of the fields are coded to denote the type and location of damage on the vehicle. Vehicle information can be linked back to Crash data using the “CRASH_RECORD_ID” field. Since this dataset is a combination of vehicles, pedestrians, and pedal cyclists not all columns are applicable to each record. Look at the Unit Type field to determine what additional data may be available for that record. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The US Car Accidents (2016–2023) dataset provides a comprehensive record of road accidents across the United States over an eight-year period. It is designed for data scientists, students, and researchers who want to analyze accident patterns, predict risks, explore factors affecting road safety, and build machine learning models for accident severity prediction.
This dataset includes detailed information on accident location, environment, weather, roadway conditions, traffic influence, and severity levels. It can be used for time-series analysis, geospatial studies, classification, regression, or exploratory data analysis (EDA).
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The program collects data for analysis of traffic safety crashes to identify problems, and evaluate countermeasures leading to reducing injuries and property damage resulting from motor vehicle crashes. The FARS dataset contains descriptions, in standard format, of each fatal crash reported. To qualify for inclusion, a crash must involve a motor vehicle traveling a traffic-way customarily open to the public and resulting in the death of a person (occupant of a vehicle or a non-motorist) within 30 days of the crash. Each crash has more than 100 coded data elements that characterize the crash, the vehicles, and the people involved. The specific data elements may be changed slightly each year to conform to the changing user needs, vehicle characteristics and highway safety emphasis areas. The type of information that FARS, a major application, processes is therefore motor vehicle crash data.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview:
Information on location and characteristics of crashes in Queensland for all reported Road Traffic Crashes occurred from 1 January 2001 to 31 Dec 2024.
Fatal, Hospitalisation, Medical treatment and Minor injury:
This dataset contains information on crashes reported to the police which resulted from the movement of at least 1 road vehicle on a road or road related area. Crashes listed in this resource have occurred on a public road and meet one of the following criteria:
Property damage:
Please note:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains detailed information on all traffic crashes reported by the NZ Police, as recorded by the Waka Kotahi Crash Analysis System (CAS). The data has been collected from January 1, 2000, and is updated monthly (typically in the first week of each month). It includes various analytical variables related to each crash and is designed for research and analysis on road safety trends in New Zealand. No personal data is included.
The Crash Analysis System (CAS) dataset is sourced from the Waka Kotahi NZ Transport Agency and offers valuable insights into: - Traffic crash trends over time. - Geographical patterns in road safety. - Analysis of crash severity, vehicle involvement, and crash conditions.
This dataset is ideal for researchers, data scientists, and enthusiasts interested in traffic safety, urban planning, or public policy analysis.
This dataset is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License. Under this license, you are free to: - Share: Copy and redistribute the material in any medium or format. - Adapt: Remix, transform, and build upon the material for any purpose, even commercially.
As required by the license, you must: - Attribute: Provide appropriate credit to the original source – Waka Kotahi NZ Transport Agency – along with a link to the license (https://creativecommons.org/licenses/by/4.0/). - Indicate Changes: Clearly state if you have modified the material. - No Additional Restrictions: Not apply legal terms or technological measures that restrict others from using the licensed material.
Attribution Example:
Data provided by Waka Kotahi NZ Transport Agency – Crash Analysis System (CAS) data under the CC BY 4.0 International License. For details, see https://creativecommons.org/licenses/by/4.0/.
advisorySpeed
The advisory (adv) speed (spd) at the crash site at the time of the crash.
areaUnitID
The unique identifier of an area unit.
bicycle
Derived variable to indicate how many bicycles were involved in the crash.
bridge
Derived variable to indicate how many times a bridge, tunnel, the abutments, handrails were struck in the crash.
bus
Derived variable to indicate how many buses were involved in the crash (excluding school buses which are counted in the SCHOOL_BUS field).
carStationWagon
Derived variable to indicate how many cars or station wagons were involved in the crash.
cliffBank
Derived variable to indicate how many times a 'cliff' or 'bank' was struck in the crash. This includes retaining walls.
crashDirectionDescription
The direction (dirn) of the crash from the reference point. Values possible are 'North', 'East', 'South' or 'West'.
crashDistance
The distance (dist) of the crash from the reference point for the crash. The reference point is often the intersection of 'crash road' and 'side road' (refer to 'cr_rd_sd_rd' variable).
crashFinancialYear
The financial (fin) year in...
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
National Collision Database (NCDB) – a database containing all police-reported motor vehicle collisions on public roads in Canada. Selected variables (data elements) relating to fatal and injury collisions for the collisions from 1999 to the most recent available data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThis dataset comprises detailed records of motor vehicle crashes occurring in Ohio, USA, from January 1, 2017, to December 31, 2023. Collected by law enforcement agencies using standardized OH-1 crash reporting forms and centralized by the Ohio Department of Public Safety, the dataset captures detailed information on 1,679,019 crashes involving 2,656,086 vehicles and 3,577,822 occupants. Structured across three levels—crash, vehicle, and occupant—the dataset includes attributes such as crash timing and location, environmental and road conditions, vehicle specifications, operational factors, occupant demographics, injury severity, safety equipment usage, and behavioral indicators like alcohol or drug involvement. Severity information is documented at both the crash and individual occupant levels, covering outcomes ranging from no injury to fatal incidents. The dataset features a total of 119 systematically named variables at the crash, vehicle, and occupant levels. A complete list of features, along with categorical value mappings, is provided in the accompanying documentation.Description of the data and file structureThis dataset contains comprehensive records of motor vehicle crashes reported across the state of Ohio, USA, from January 1, 2017, to December 31, 2023. The data were collected by law enforcement agencies using standardized crash reporting forms (OH-1) and centralized through the Ohio Department of Public Safety’s data systems.It captures detailed, structured information related to crash events, vehicles involved, and individuals affected. Each data sample corresponds to an occupant of a vehicle. There are unique identifiers for each crash and involved vehicle. Hence, the dataset is organized into three primary levels:Crash-Level Data: Includes unique identifiers for each of the 1,679,019 reported crashes, along with temporal details (date, time), location attributes, environmental conditions (e.g., weather, light, road surface), and overall crash characteristics (e.g., number of units involved, severity classification, work zone presence). The identifier for the crash is the feature “DocumentNumber”.Vehicle-Level Data: Comprises identifiers for each of the 2,656,086 vehicles (units) involved in a crash. Attributes include vehicle type, make, model, year of manufacture, vehicle defects, and operational details such as posted speed, traffic control devices, and pre-crash actions. Interacting vehicle types and hazardous material indicators are also documented. Vehicle-Level features are identified by the prefix ”Units.” in the feature name.Occupant-Level Data: Contains 3,577,822 records detailing individuals involved in crashes. This includes demographic information (age, gender), seating position, person injury severity, use of safety equipment (e.g., seat belts, airbags, helmets), and behavioral factors such as alcohol or drug involvement, distraction status, and test results where applicable. Occupant-Level features are identified by the prefix “Units.People.” in the feature name.The severity of the accident is also documented. The “CrashSeverity” feature document the severity of the crash in the following levels: Fatal (15021), Suspected Serious Injury (83764), Suspected Minor Injury (483026), Possible Injury (461019), and No Apparent Injury (2440823). Similarly, also individual people injury levels are recorded in the feature “Units.People.Injury”. The file "summary_2023_new.pdf" is a summary file that contains data analysis of the dataset (statistics and plots).There are 119 unique features in the data, and their complete list of name and type is reported below. Their categorical levels in case of integer-encoding is found in the file “mapping.yaml”.Access informationOther publicly accessible locations of the data:The full dataset submitted to figshare is not available elsewhere in its complete and curated form. However, data covering the most recent five years, including the current year, are publicly accessible through the following sources:Ohio Department of Public Safety Crash Retrieval Portal: https://ohtrafficdata.dps.ohio.gov/crashretrievalOhio Statistics and Analytics for Traffic Safety (OSTATS): https://statepatrol.ohio.gov/dashboards-statistics/ostats-dashboardsThese public portals provide access to selected crash data but do not include the full historical dataset or the cleaned, integrated, and reformatted version provided through this submission.Data was derived from the following sources:Ohio Department of Public SafetyHuman subjects dataThis dataset was derived entirely from publicly available traffic crash reports collected and disseminated by the Ohio Department of Public Safety through the Ohio Statistics and Analytics for Traffic Safety (OSTATS) platform.To ensure compliance with ethical standards for data sharing, this dataset contains no direct identifiers (e.g., names, addresses, license plate numbers, or VINs linked to individuals). All personal identifiers have been removed or were not included in the public dataset. Furthermore, the dataset contains no more than three indirect identifiers per record. These indirect identifiers (e.g., crash year, crash county, and age group) were selected based on their relevance to the study while minimizing re-identification risk.Where possible, continuous variables were converted to categories (e.g., age groups instead of exact age), and geographic detail was limited to broader regional indicators rather than precise location data. Data cleaning and aggregation procedures were conducted to further reduce identifiability while retaining the analytic value of the dataset for modeling injury risk across system domains.As described in the associated manuscript, all analyses were conducted on this de-identified dataset, and no additional linkage to identifiable information was performed. As such, this dataset does not require IRB oversight or data use agreements and is suitable for open-access publication under CC-BY licence.No direct interaction or intervention with human participants occurred during the creation of this dataset, and no personally identifiable information (PII) is included.Given the publicly available nature of the source data and the absence of PII, explicit participant consent was not required. However, by relying exclusively on open-access government data and following de-identification protocols aligned with the Common Rule (45 CFR 46), this dataset meets ethical standards for public data sharing.
Facebook
TwitterOpen Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
License information was derived automatically
Reported number of PEOPLE killed or seriously injured (KSI) in road traffic accidents (Calendar Year) (LI 13a (i)) *Please note that data for the previous calendar year is provisional until it gets validated by DfT, which normally takes place in September.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Town of Cary [source]
The Town of Cary Crash Database contains five years worth of detailed crash data up to the current date. Each incident is mapped based on National Incident-Based Reporting System (NIBRS) criteria, providing greater accuracy and access to all available crashes in the County.
This valuable resource is constantly being updated – every day fresh data is added and older records are subject to change. The locations featured in this dataset reflect approximate points of intersection or impact. In cases when essential detail elements are missing or rendered unmapable, certain crash incidents may not appear on maps within this source.
We invite you to explore how crashes have influenced the Town of Cary over the past five years – from changes in weather conditions and traffic controls to vehicular types, contributing factors, travel zones and more! Whether it's analyzing road design elements or assessing fatality rates – come take a deeper look at what has shaped modern day policies for safe driving today!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Understanding Data Elements – The first step in using this dataset is understanding what information is included in it. The data elements include location descriptions, road features, character traits of roads and more that are associated with each crash. Additionally, the data provides details about contributing factors, light conditions, weather conditions and more that can be used to understand why certain crashes happen in certain locations or under certain circumstances.
- Analyzing trends in crash locations to better understand where crashes are more likely to occur. For example, using machine learning techniques and geographical mapping tools to identify patterns in the data that could enable prediction of future hotspots of crashes.
- Investigating the correlations between roadway characteristics (e.g., surface, configuration and class) and accident severities in order to recommend improvements or additional preventative measures at certain intersections or road segments which may help reduce crash-related fatalities/injuries.
- Using data from various contributing factors (e.g., traffic control, weather conditions, work area) as an input for a predictive model for analyzing the risk factors associated with different types of crashes such as head-on collisions, rear-end collisions or side swipe accidents so that safety alerts can be issued for public awareness campaigns during specific times/days/conditions where such incidents have been known to occur more often or have increased severity repercussions than usual (i.e., near schools during school days)
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: crash-data-3.csv | Column name | Description | |:--------------|:-----------------------------------------------------------------------------------------------------| | type | The type of crash, such as single-vehicle, multi-vehicle, or pedestrian. (String) | | features | The features of the crash, such as location, contributing factors, vehicle types, and more. (String) |
File: crash-data-1.csv | Column name | Description | |:-------------------------|:----------...
Facebook
TwitterOpen Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
License information was derived automatically
Reported number of PEOPLE killed in road traffic accidents (Calendar Year) (LI 13a) *Please note that data for the previous calendar year is provisional until it gets validated by DfT, which normally takes place in September.
Facebook
TwitterThis dataset contains all traffic crashes reported to CSPD . This dataset may be tied to the Tickets and Citations dataset by ticket number.
Facebook
TwitterThis data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “RD NO” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table.
Facebook
TwitterThese tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
We are proposing to make some changes to these tables in future, further details can be found alongside the latest provisional statistics.
The tables below are the latest final annual statistics for 2024, which are currently the latest available data. Provisional statistics for the first half of 2025 are also available, with provisional data for the whole of 2025 scheduled for publication in May 2026.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/6925869422424e25e6bc3105/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 28.9 KB).
https://assets.publishing.service.gov.uk/media/68d42292b6c608ff9421b2d2/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 11.2 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/68d3cdeeca266424b221b253/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 34.7 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/68d3cdfee65dc716bfb1dcf3/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 129 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/68d3ce0bc908572e81248c1f/ras0201.ods">Numbers and rates (ODS, 37.5 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/68d3ce17b6c608ff9421b25e/ras0202.ods">Sex and age group (ODS, 178 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB) - this table will be updated for 2024 once data is available for other modes.
RAS0301: https://assets.publishing.service.gov.uk/media/68d3ce2b8c739d679fb1dcf6/ras0301.ods">Speed limit, built-up and non-built-up roads (<span class="gem-c-attachmen