These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).
https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)
RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)
RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa
This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
Crash data shows information about each traffic crash on city streets within the City of Chicago limits and under the jurisdiction of Chicago Police Department (CPD). Data are shown as is from the electronic crash reporting system (E-Crash) at CPD, excluding any personally identifiable information. Records are added to the data portal when a crash report is finalized or when amendments are made to an existing report in E-Crash. Data from E-Crash are available for some police districts in 2015, but citywide data are not available until September 2017. About half of all crash reports, mostly minor crashes, are self-reported at the police district by the driver(s) involved and the other half are recorded at the scene by the police officer responding to the crash. Many of the crash parameters, including street condition data, weather condition, and posted speed limits, are recorded by the reporting officer based on best available information at the time, but many of these may disagree with posted information or other assessments on road conditions. If any new or updated information on a crash is received, the reporting officer may amend the crash report at a later time. A traffic crash within the city limits for which CPD is not the responding police agency, typically crashes on interstate highways, freeway ramps, and on local roads along the City boundary, are excluded from this dataset. All crashes are recorded as per the format specified in the Traffic Crash Report, SR1050, of the Illinois Department of Transportation. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. As per Illinois statute, only crashes with a property damage value of $1,500 or more or involving bodily injury to any person(s) and that happen on a public roadway and that involve at least one moving vehicle, except bike dooring, are considered reportable crashes. However, CPD records every reported traffic crash event, regardless of the statute of limitations, and hence any formal Chicago crash dataset released by Illinois Department of Transportation may not include all the crashes listed here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]
. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
This dataset contains information about vehicles (or units as they are identified in crash reports) involved in a traffic crash. This dataset should be used in conjunction with the traffic Crash and People dataset available in the portal. “Vehicle” information includes motor vehicle and non-motor vehicle modes of transportation, such as bicycles and pedestrians. Each mode of transportation involved in a crash is a “unit” and get one entry here. Each vehicle, each pedestrian, each motorcyclist, and each bicyclist is considered an independent unit that can have a trajectory separate from the other units. However, people inside a vehicle including the driver do not have a trajectory separate from the vehicle in which they are travelling and hence only the vehicle they are travelling in get any entry here. This type of identification of “units” is needed to determine how each movement affected the crash. Data for occupants who do not make up an independent unit, typically drivers and passengers, are available in the People table. Many of the fields are coded to denote the type and location of damage on the vehicle. Vehicle information can be linked back to Crash data using the “CRASH_RECORD_ID” field. Since this dataset is a combination of vehicles, pedestrians, and pedal cyclists not all columns are applicable to each record. Look at the Unit Type field to determine what additional data may be available for that record.
The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here.
Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.
https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
National Collision Database (NCDB) – a database containing all police-reported motor vehicle collisions on public roads in Canada. Selected variables (data elements) relating to fatal and injury collisions for the collisions from 1999 to the most recent available data.
The program collects data for analysis of traffic safety crashes to identify problems, and evaluate countermeasures leading to reducing injuries and property damage resulting from motor vehicle crashes. The FARS dataset contains descriptions, in standard format, of each fatal crash reported. To qualify for inclusion, a crash must involve a motor vehicle traveling a traffic-way customarily open to the public and resulting in the death of a person (occupant of a vehicle or a non-motorist) within 30 days of the crash. Each crash has more than 100 coded data elements that characterize the crash, the vehicles, and the people involved. The specific data elements may be changed slightly each year to conform to the changing user needs, vehicle characteristics and highway safety emphasis areas. The type of information that FARS, a major application, processes is therefore motor vehicle crash data.
The State of Michigan’s criteria for a crash is a motor vehicle that was in transport and on the roadway, that resulted in death, injury, or property damage of $1,000 or more. Traffic crashes in this dataset are derived from SEMCOG’s Open Data Portal. Each row in the dataset represents a traffic crash that includes data about when and where the crash occurred, road conditions, number of individuals involved in the crash, and various factors that apply to the crash (Train, Bus, Deer, etc.). Also included is the number of injuries and fatalities that are associated with the crash.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview:
Information on location and characteristics of crashes in Queensland for all reported Road Traffic Crashes occurred from 1 January 2001 to 30 June 2024.
Fatal, Hospitalisation, Medical treatment and Minor injury:
This dataset contains information on crashes reported to the police which resulted from the movement of at least 1 road vehicle on a road or road related area. Crashes listed in this resource have occurred on a public road and meet one of the following criteria:
Property damage:
Please note:
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive statistics on recorded road accidents in Thailand, spanning from approximately 2019 to 2022. The data was sourced from raw information provided by the Office of the Permanent Secretary, Ministry of Transport, which is also utilized in this public dashboard for easier access and visualization. The dataset encompasses various aspects of road accidents and aims to shed light on the trends and patterns within this critical area of concern, analysis of this data could be crucial in guiding road safety policies and measures👍.
Cleaned and ready-to-use 3 Years of data points with total 81,735 rows.
Column | Description |
---|---|
acc_code | The accident code or identifier. |
incident_datetime | The date and time of the accident occurrence. |
report_datetime | The date and time when the accident was reported. |
province_th | The name of the province in Thailand, written in Thai. |
province_en | The name of the province in Thailand, written in English. |
agency | The government agency responsible for the road and traffic management. |
route | The route or road segment where the accident occurred. |
vehicle_type | The type of vehicle involved in the accident. |
presumed_cause | The presumed cause or reason for the accident. |
accident_type | The type or nature of the accident. |
number_of_vehicles_involved | The number of vehicles involved in the accident. |
number_of_fatalities | The number of fatalities resulting from the accident. |
number_of_injuries | The number of injuries resulting from the accident. |
weather_condition | The weather condition at the time of the accident. |
latitude | The latitude coordinate of the accident location. |
longitude | The longitude coordinate of the accident location. |
road_description | The description of the road type or configuration where the accident occurred. |
slope_description | The description of the slope condition at the accident location. |
The main source of the crash data is owned and maintained by the Virginia Department of Motor Vehicle (DMV). DMV’s Traffic Records Electronic Data System (TREDS) is a state-of-the-art data system maintained by the DMV Highway Safety Office (HSO) that automates and centralizes all crash data in Virginia. Per data sharing use agreement with DMV, VDOT publishes the non-privileged crash data through Virginia Roads data portal. In providing this data, VDOT assumes no responsibility for the accuracy and completeness of the data. In the process of recording and compiling the data, some deletions and/or omissions of data may occur and VDOT is not responsible for any such occurrences. The most recent data contained in this dataset is preliminary and subject to change.
Please be advised that, under Title 23 United State Code – Section 407, this crash information cannot be used in discovery or as evidence in a Federal or State court proceeding or considered for other purposes in any action for damages against VDOT or the State of Virginia arising from any occurrence at the location identified.
All users shall comply with and be subject to all applicable laws and regulations, whether federal or state, in connection with any of the receipt and use of DMV data including, but not limited to, (1) the Federal Drivers Privacy Protection Act (18 U.S.C. § 2721 et seq.), (2) the Government Data Collection and Dissemination Practices Act (Va. Code § 2.2-3800 et seq.), (3) the Virginia Computer Crimes Act (Va. Code § 18.2-152.1 et seq.), (4) the provisions of Va. Code §§ 46.2-208 and 58.1-3, and (5) any successor rules, regulations, or guidelines adopted by DMV with regard to disclosure or dissemination of any information obtained from DMV records or files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database that can be used for macro-level analysis of road accidents on interurban roads in Europe. Through the variables it contains, road accidents can be explained using variables related to economic resources invested in roads, traffic, road network, socioeconomic characteristics, legislative measures and meteorology. This repository contains the data used for the analysis carried out in the papers:
1. Calvo-Poyo F., Navarro-Moreno J., de Oña J. (2020) Road Investment and Traffic Safety: An International Study. Sustainability 12:6332. https://doi.org/10.3390/su12166332
2. Navarro-Moreno J., Calvo-Poyo F., de Oña J. (2022) Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Int J Sustain Transp 1–11. https://doi.org/10.1080/15568318.2022.2082344
3. Navarro-Moreno, J., Calvo-Poyo, F., de Oña, J. (2022) Investment in roads and traffic safety: linked to economic development? A European comparison. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-22567
The file with the database is available in excel.
DATA SOURCES
The database presents data from 1998 up to 2016 from 20 european countries: Austria, Belgium, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom. Crash data were obtained from the United Nations Economic Commission for Europe (UNECE) [2], which offers enough level of disaggregation between crashes occurring inside versus outside built-up areas.
With reference to the data on economic resources invested in roadways, deserving mention –given its extensive coverage—is the database of the Organisation for Economic Cooperation and Development (OECD), managed by the International Transport Forum (ITF) [1], which collects data on investment in the construction of roads and expenditure on their maintenance, following the definitions of the United Nations System of National Accounts (2008 SNA). Despite some data gaps, the time series present consistency from one country to the next. Moreover, to confirm the consistency and complete missing data, diverse additional sources, mainly the national Transport Ministries of the respective countries were consulted. All the monetary values were converted to constant prices in 2015 using the OECD price index.
To obtain the rest of the variables in the database, as well as to ensure consistency in the time series and complete missing data, the following national and international sources were consulted:
DATA BASE DESCRIPTION
The database was made trying to combine the longest possible time period with the maximum number of countries with complete dataset (some countries like Lithuania, Luxemburg, Malta and Norway were eliminated from the definitive dataset owing to a lack of data or breaks in the time series of records). Taking into account the above, the definitive database is made up of 19 variables, and contains data from 20 countries during the period between 1998 and 2016. Table 1 shows the coding of the variables, as well as their definition and unit of measure.
Table. Database metadata
Code |
Variable and unit |
fatal_pc_km |
Fatalities per billion passenger-km |
fatal_mIn |
Fatalities per million inhabitants |
accid_adj_pc_km |
Accidents per billion passenger-km |
p_km |
Billions of passenger-km |
croad_inv_km |
Investment in roads construction per kilometer, €/km (2015 constant prices) |
croad_maint_km |
Expenditure on roads maintenance per kilometer €/km (2015 constant prices) |
prop_motorwa |
Proportion of motorways over the total road network (%) |
populat |
Population, in millions of inhabitants |
unemploy |
Unemployment rate (%) |
petro_car |
Consumption of gasolina and petrol derivatives (tons), per tourism |
alcohol |
Alcohol consumption, in liters per capita (age > 15) |
mot_index |
Motorization index, in cars per 1,000 inhabitants |
den_populat |
Population density, inhabitants/km2 |
cgdp |
Gross Domestic Product (GDP), in € (2015 constant prices) |
cgdp_cap |
GDP per capita, in € (2015 constant prices) |
precipit |
Average depth of rain water during a year (mm) |
prop_elder |
Proportion of people over 65 years (%) |
dps |
Demerit Point System, dummy variable (0: no; 1: yes) |
freight |
Freight transport, in billions of ton-km |
ACKNOWLEDGEMENTS
This database was carried out in the framework of the project “Inversión en carreteras y seguridad vial: un análisis internacional (INCASE)”, financed by: FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/Proyecto RTI2018-101770-B-I00, within Spain´s National Program of R+D+i Oriented to Societal Challenges.
Moreover, the authors would like to express their gratitude to the Ministry of Transport, Mobility and Urban Agenda of Spain (MITMA), and the Federal Ministry of Transport and Digital Infrastructure of Germany (BMVI) for providing data for this study.
REFERENCES
1. International Transport Forum OECD iLibrary | Transport infrastructure investment and maintenance.
2. United Nations Economic Commission for Europe UNECE Statistical Database Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS/?rxid=18ad5d0d-bd5e-476f-ab7c-40545e802eeb (accessed on Apr 28, 2020).
3. European Commission Database - Eurostat Available online: https://ec.europa.eu/eurostat/data/database (accessed on Apr 28, 2021).
4. Directorate-General for Mobility and Transport. European Commission EU Transport in figures - Statistical Pocketbooks Available online: https://ec.europa.eu/transport/facts-fundings/statistics_en (accessed on Apr 28, 2021).
5. World Bank Group World Bank Open Data | Data Available online: https://data.worldbank.org/ (accessed on Apr 30, 2021).
6. World Health Organization (WHO) WHO Global Information System on Alcohol and Health Available online: https://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed on Apr 29, 2021).
7. European Transport Safety Council (ETSC) Traffic Law Enforcement across the EU - Tackling the Three Main Killers on Europe’s Roads; Brussels, Belgium, 2011;
8. Copernicus Climate Change Service Climate data for the European energy sector from 1979 to 2016 derived from ERA-Interim Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-european-energy-sector?tab=overview (accessed on Apr 29, 2021).
9. Klipp, S.; Eichel, K.; Billard, A.; Chalika, E.; Loranc, M.D.; Farrugia, B.; Jost, G.; Møller, M.; Munnelly, M.; Kallberg, V.P.; et al. European Demerit Point Systems : Overview of their main features and expert opinions. EU BestPoint-Project 2011, 1–237.
10. Ministerstvo dopravy Serie: Ročenka dopravy; Ročenka dopravy; Centrum dopravního výzkumu: Prague, Czech Republic;
11. Bundesministerium
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
UK police forces collect data on every vehicle collision in the uk on a form called Stats19. Data from this form ends up at the DfT and is published at https://data.gov.uk/dataset/road-accidents-safety-data
There are 3 CSVs in this set. Accidents is the primary one and has references by Accident_Index to the casualties and vehicles tables. This might be better done as a database.
Questions to ask of this data -
dft05-15.tgz - tar of Accidents0515.csv, Casualties0515.csv and Vehicles0515.csv tidydata.sh - script to get and tidy data.
This dataset contains all traffic crashes reported to CSPD . This dataset may be tied to the Tickets and Citations dataset by ticket number.
This is a subset of a larger dataset. This dataset includes pedestrians and cyclists killed in traffic collisions in 2021.
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains crash information from the last five years to the current date. The data is based on the National Incident Based Reporting System (NIBRS). The data is dynamic, allowing for additions, deletions and modifications at any time, resulting in more accurate information in the database. Due to ongoing and continuous data entry, the numbers of records in subsequent extractions are subject to change.About Crash DataThe Cary Police Department strives to make crash data as accurate as possible, but there is no avoiding the introduction of errors into this process, which relies on data furnished by many people and that cannot always be verified. As the data is updated on this site there will be instances of adding new incidents and updating existing data with information gathered through the investigative process.Not surprisingly, crash data becomes more accurate over time, as new crashes are reported and more information comes to light during investigations.This dynamic nature of crash data means that content provided here today will probably differ from content provided a week from now. Likewise, content provided on this site will probably differ somewhat from crime statistics published elsewhere by the Town of Cary, even though they draw from the same database.About Crash LocationsCrash locations reflect the approximate locations of the crash. Certain crashes may not appear on maps if there is insufficient detail to establish a specific, mappable location.
These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).
https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)
RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)
RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa