31 datasets found
  1. N

    New York City Leading Causes of Death

    • data.cityofnewyork.us
    • catalog.data.gov
    application/rdfxml +5
    Updated Dec 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2024). New York City Leading Causes of Death [Dataset]. https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/jb7j-dtam
    Explore at:
    csv, json, tsv, xml, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Department of Health and Mental Hygiene (DOHMH)
    Area covered
    New York
    Description

    The leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City.

    Report last ran: 09/24/2019
    Rates based on small numbers (RSE > 30) as well as aggregate counts less than 5 have been suppressed in downloaded data

    Source: Bureau of Vital Statistics and New York City Department of Health and Mental Hygiene

  2. d

    NYPD Shooting Incident Data (Year To Date)

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). NYPD Shooting Incident Data (Year To Date) [Dataset]. https://catalog.data.gov/dataset/nypd-shooting-incident-data-year-to-date
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    List of every shooting incident that occurred in NYC during the current calendar year. This is a breakdown of every shooting incident that occurred in NYC during the current calendar year. This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning before being posted on the NYPD website. Each record represents a shooting incident in NYC and includes information about the event, the location and time of occurrence. In addition, information related to suspect and victim demographics is also included. This data can be used by the public to explore the nature of police enforcement activity. Please refer to the attached data footnotes for additional information about this dataset.

  3. d

    DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC...

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC hospitals for Covid-19 like Illness [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-milestone-data-daily-number-of-people-admitted-to-nyc-hospitals-for-covid-1
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    This dataset shows the number of hospital admissions for influenza-like illness, pneumonia, or include ICD-10-CM code (U07.1) for 2019 novel coronavirus. Influenza-like illness is defined as a mention of either: fever and cough, fever and sore throat, fever and shortness of breath or difficulty breathing, or influenza. Patients whose ICD-10-CM code was subsequently assigned with only an ICD-10-CM code for influenza are excluded. Pneumonia is defined as mention or diagnosis of pneumonia. Baseline data represents the average number of people with COVID-19-like illness who are admitted to the hospital during this time of year based on historical counts. The average is based on the daily avg from the rolling same week (same day +/- 3 days) from the prior 3 years. Percent change data represents the change in count of people admitted compared to the previous day. Data sources include all hospital admissions from emergency department visits in NYC. Data are collected electronically and transmitted to the NYC Health Department hourly. This dataset is updated daily. All identifying health information is excluded from the dataset.

  4. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +3more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  5. DOHMH Covid-19 Milestone Data: New Cases of Covid-19 (7 Day Average)

    • data.cityofnewyork.us
    • datasets.ai
    • +1more
    application/rdfxml +5
    Updated Jun 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2021). DOHMH Covid-19 Milestone Data: New Cases of Covid-19 (7 Day Average) [Dataset]. https://data.cityofnewyork.us/Health/DOHMH-Covid-19-Milestone-Data-New-Cases-of-Covid-1/xwtc-hedq
    Explore at:
    csv, json, xml, application/rdfxml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jun 15, 2021
    Dataset provided by
    New York City Department of Health and Mental Hygienehttps://nyc.gov/health
    Authors
    Department of Health and Mental Hygiene (DOHMH)
    Description

    This dataset shows daily confirmed and probable cases of COVID-19 in New York City by date of specimen collection. Total cases has been calculated as the sum of daily confirmed and probable cases. Seven-day averages of confirmed, probable, and total cases are also included in the dataset. A person is classified as a confirmed COVID-19 case if they test positive with a nucleic acid amplification test (NAAT, also known as a molecular test; e.g. a PCR test). A probable case is a person who meets the following criteria with no positive molecular test on record: a) test positive with an antigen test, b) have symptoms and an exposure to a confirmed COVID-19 case, or c) died and their cause of death is listed as COVID-19 or similar. As of June 9, 2021, people who meet the definition of a confirmed or probable COVID-19 case >90 days after a previous positive test (date of first positive test) or probable COVID-19 onset date will be counted as a new case. Prior to June 9, 2021, new cases were counted ≥365 days after the first date of specimen collection or clinical diagnosis. Any person with a residence outside of NYC is not included in counts. Data is sourced from electronic laboratory reporting from the New York State Electronic Clinical Laboratory Reporting System to the NYC Health Department. All identifying health information is excluded from the dataset.

    These data are used to evaluate the overall number of confirmed and probable cases by day (seven day average) to track the trajectory of the pandemic. Cases are classified by the date that the case occurred. NYC COVID-19 data include people who live in NYC. Any person with a residence outside of NYC is not included.

  6. d

    Data from: Homicides in New York City, 1797-1999 [And Various Historical...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Homicides in New York City, 1797-1999 [And Various Historical Comparison Sites] [Dataset]. https://catalog.data.gov/dataset/homicides-in-new-york-city-1797-1999-and-various-historical-comparison-sites-f1e29
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    New York
    Description

    There has been little research on United States homicide rates from a long-term perspective, primarily because there has been no consistent data series on a particular place preceding the Uniform Crime Reports (UCR), which began its first full year in 1931. To fill this research gap, this project created a data series on homicides per capita for New York City that spans two centuries. The goal was to create a site-specific, individual-based data series that could be used to examine major social shifts related to homicide, such as mass immigration, urban growth, war, demographic changes, and changes in laws. Data were also gathered on various other sites, particularly in England, to allow for comparisons on important issues, such as the post-World War II wave of violence. The basic approach to the data collection was to obtain the best possible estimate of annual counts and the most complete information on individual homicides. The annual count data (Parts 1 and 3) were derived from multiple sources, including the Federal Bureau of Investigation's Uniform Crime Reports and Supplementary Homicide Reports, as well as other official counts from the New York City Police Department and the City Inspector in the early 19th century. The data include a combined count of murder and manslaughter because charge bargaining often blurs this legal distinction. The individual-level data (Part 2) were drawn from coroners' indictments held by the New York City Municipal Archives, and from daily newspapers. Duplication was avoided by keeping a record for each victim. The estimation technique known as "capture-recapture" was used to estimate homicides not listed in either source. Part 1 variables include counts of New York City homicides, arrests, and convictions, as well as the homicide rate, race or ethnicity and gender of victims, type of weapon used, and source of data. Part 2 includes the date of the murder, the age, sex, and race of the offender and victim, and whether the case led to an arrest, trial, conviction, execution, or pardon. Part 3 contains annual homicide counts and rates for various comparison sites including Liverpool, London, Kent, Canada, Baltimore, Los Angeles, Seattle, and San Francisco.

  7. N

    NYC crime

    • data.cityofnewyork.us
    • data.wu.ac.at
    Updated Feb 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Police Department (NYPD) (2025). NYC crime [Dataset]. https://data.cityofnewyork.us/Public-Safety/NYC-crime/qb7u-rbmr
    Explore at:
    xml, csv, application/rdfxml, tsv, application/rssxml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Feb 6, 2025
    Authors
    Police Department (NYPD)
    Area covered
    New York
    Description

    This dataset includes all valid felony, misdemeanor, and violation crimes reported to the New York City Police Department (NYPD) for all complete quarters so far this year (2017). For additional details, please see the attached data dictionary in the ‘About’ section.

  8. d

    Air Quality

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Apr 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Air Quality [Dataset]. https://catalog.data.gov/dataset/air-quality
    Explore at:
    Dataset updated
    Apr 19, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Dataset contains information on New York City air quality surveillance data. Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.

  9. d

    DOHMH COVID-19 Antibody-by-Week

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Week [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-week
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by week of testing. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/trends/antibody-by-week.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates. For further details, visit: • https://www1.nyc.gov/site/doh/covid/covid-19-data.pagehttps://github.com/nychealth/coronavirus-data

  10. Urban Heat Islands

    • hub.arcgis.com
    • climate-center-lincolninstitute.hub.arcgis.com
    Updated Feb 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Urban Heat Islands [Dataset]. https://hub.arcgis.com/maps/cdffeabb1b62410d8ef8dc8ae66917f9
    Explore at:
    Dataset updated
    Feb 12, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Description

    This scene contains the relative heat severity for every pixel for every city in the United States, from this source layer. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this scene is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.

  11. d

    DOHMH COVID-19 Antibody-by-Neighborhood Poverty

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Neighborhood Poverty [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-neighborhood-poverty
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain

  12. d

    Vehicle Miles Traveled

    • data.world
    csv, zip
    Updated Aug 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). Vehicle Miles Traveled [Dataset]. https://data.world/associatedpress/vehicle-miles-traveled
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Aug 30, 2023
    Authors
    The Associated Press
    Time period covered
    Mar 1, 2020 - Dec 31, 2020
    Description

    **This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **

    Overview

    Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.

    This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.

    Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.

    This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.

    Findings

    • Nationally, data shows that vehicle travel in the US has doubled compared to the seven-day period ending April 13, which was the lowest VMT since the COVID-19 crisis began. In early December, travel reached a low not seen since May, with a small rise leading up to the Christmas holiday.
    • Average vehicle miles traveled continues to be below what would be expected without a pandemic - down 38% compared to January 2020. September 4 reported the largest single day estimate of vehicle miles traveled since March 14.
    • New Jersey, Michigan and New York are among the states with the largest relative uptick in travel at this point of the pandemic - they report almost two times the miles traveled compared to their lowest seven-day period. However, travel in New Jersey and New York is still much lower than expected without a pandemic. Other states such as New Mexico, Vermont and West Virginia have rebounded the least. ## About This Data The county level data is provided by StreetLight Data, Inc, a transportation analysis firm that measures travel patterns across the U.S.. The data is from their Vehicle Miles Traveled (VMT) Monitor which uses anonymized and aggregated data from smartphones and other GPS-enabled devices to provide county-by-county VMT metrics for more than 3,100 counties. The VMT Monitor provides an estimate of total vehicle miles travelled by residents of each county, each day since the COVID-19 crisis began (March 1, 2020), as well as a change from the baseline average daily VMT calculated for January 2020. Additional columns are calculations by AP.

    Included Data

    01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.

    Additional Data Queries

    * Filter for specific state - filters 02_vmt_state.csv daily data for specific state.

    * Filter counties by state - filters 03_vmt_county.csv daily data for counties in specific state.

    * Filter for specific county - filters 03_vmt_county.csv daily data for specific county.

    Interactive

    The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:

    @(https://interactives.ap.org/vmt-map/)

    Interactive Embed Code

    Using the Data

    This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.

    Caveats

    • The data from StreetLight Data, Inc does not include data for some low-population counties with low VMT (<5,000 miles/day in their baseline month of January 2020). In our analyses, we only include the 2,779 counties that have daily data for the entire period (March 1, 2020 to current).
    • In some cases, a lack of decline in mobility from March to April can indicate that movement in the county is essential to keeping the larger economy going or that residents need to drive further to reach essentials businesses like grocery stores compared to other counties.
    • The VMT includes both passenger and commercial miles, so truck traffic is included. However, the proxy is based on the "total number of trip starts and ends for all devices whose most frequent location is in this county". It does not count the VMT of trucks cutting through a county.
    • For those instances where travel begins in one county and ends in another, the county where the miles are recorded is always the vehicle’s home county. ###### Contact reporter Angeliki Kastanis at akastanis@ap.org.
  13. N

    Confirmed COVID-19 Case and Hospitalization Counts

    • data.cityofnewyork.us
    application/rdfxml +5
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2025). Confirmed COVID-19 Case and Hospitalization Counts [Dataset]. https://data.cityofnewyork.us/Health/Confirmed-COVID-19-Case-and-Hospitalization-Counts/3w37-3kr9
    Explore at:
    csv, application/rssxml, json, xml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Mar 26, 2025
    Authors
    Department of Health and Mental Hygiene (DOHMH)
    Description

    Daily count of NYC residents who tested positive for SARS-CoV-2, who were hospitalized with COVID-19, and deaths among COVID-19 patients.

    Note that this dataset currently pulls from https://raw.githubusercontent.com/nychealth/coronavirus-data/master/case-hosp-death.csv on a daily basis.

  14. DOHMH COVID-19 Antibody-by-Modified ZIP Code Tabulation Area

    • data.cityofnewyork.us
    • gimi9.com
    • +1more
    Updated Jul 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2024). DOHMH COVID-19 Antibody-by-Modified ZIP Code Tabulation Area [Dataset]. https://data.cityofnewyork.us/dataset/DOHMH-COVID-19-Antibody-by-Modified-ZIP-Code-Tabul/6qs8-44ki
    Explore at:
    csv, application/rssxml, tsv, xml, application/rdfxml, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Jul 3, 2024
    Dataset provided by
    New York City Department of Health and Mental Hygienehttps://nyc.gov/health
    Authors
    Department of Health and Mental Hygiene (DOHMH)
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by modified ZIP Code Tabulation Area (ZCTA) of residence. Modified ZCTA reflects the first non-missing address within NYC for each person reported with an antibody test result. This unit of geography is similar to ZIP codes but combines census blocks with smaller populations to allow more stable estimates of population size for rate calculation. It can be challenging to map data that are reported by ZIP Code. A ZIP Code doesn’t refer to an area, but rather a collection of points that make up a mail delivery route. Furthermore, there are some buildings that have their own ZIP Code, and some non-residential areas with ZIP Codes. To deal with the challenges of ZIP Codes, the Health Department uses ZCTAs which solidify ZIP codes into units of area. Often, data reported by ZIP code are actually mapped by ZCTA. The ZCTA geography was developed by the U.S. Census Bureau. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-modzcta.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level.
    These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents.

    In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders)

    Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning.

    Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020.

    Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates.
    For further details, visit: • https://www1.nyc.gov/site/doh/covid/covid-19-data.pagehttps://github.com/nychealth/coronavirus-datahttps://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk

  15. New York State Statewide COVID-19 Vaccination Data by County (Archived,...

    • health.data.ny.gov
    • gimi9.com
    application/rdfxml +5
    Updated Nov 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2023). New York State Statewide COVID-19 Vaccination Data by County (Archived, Initial) [Dataset]. https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Vaccination-Data/duk7-xrni
    Explore at:
    csv, application/rdfxml, xml, application/rssxml, json, tsvAvailable download formats
    Dataset updated
    Nov 3, 2023
    Dataset authored and provided by
    New York State Department of Health
    Area covered
    New York
    Description

    Note: As of November 10, 2023, this dataset has been archived. For the current version of this data, please visit: https://health.data.ny.gov/d/gikn-znjh

    This dataset reports daily on the number of people vaccinated by New York providers with at least one dose and with a complete COVID-19 vaccination series overall since December 14, 2020. New York providers include hospitals, mass vaccination sites operated by the State or local governments, pharmacies, and other providers registered with the State to serve as points of distribution.

    This dataset is created by the New York State Department of Health from data reported to the New York State Immunization Information System (NYSIIS) and the New York City Citywide Immunization Registry (NYC CIR). County-level vaccination data is based on data reported to NYSIIS and NYC CIR by the providers administering vaccines. Residency is self-reported by the individual being vaccinated. This data does not include vaccine administered through Federal entities or performed outside of New York State to New York residents. NYSIIS and CIR data is used for county-level statistics. New York State Department of Health requires all New York State vaccination providers to report all COVID-19 vaccination administration data to NYSIIS and NYC CIR within 24 hours of administration.

  16. NYC Housing Development DOB Permit Issuance

    • kaggle.com
    zip
    Updated Mar 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VipinGyanchandani (2019). NYC Housing Development DOB Permit Issuance [Dataset]. https://www.kaggle.com/vgyani/nyc-housing-development-dob-permit-issuance
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 30, 2019
    Authors
    VipinGyanchandani
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    New York
    Description

    The Department of Buildings (DOB) issues permits for construction and demolition activities in the City of New York. The construction industry must submit an application to DOB with details of the construction job they would like to complete. The primary types of application, aka job type, are: New Building, Demolition, and Alterations Type 1, 2, and 3. Each job type can have multiple work types, such as general construction, boiler, elevator, and plumbing. Each work type will receive a separate permit. (See the DOB Job Application Filings dataset for information about each job application.) Each row/record in this dataset represents the life cycle of one permit for one work type. The dataset is updated daily with new records, and each existing record will be updated as the permit application moves through the approval process to reflect the latest status of the application.

  17. N

    NYC Dog Licensing Dataset

    • data.cityofnewyork.us
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Feb 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Mental Health and Hygeine (2024). NYC Dog Licensing Dataset [Dataset]. https://data.cityofnewyork.us/Health/NYC-Dog-Licensing-Dataset/nu7n-tubp
    Explore at:
    csv, json, tsv, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Feb 6, 2024
    Dataset authored and provided by
    Department of Mental Health and Hygeine
    Area covered
    New York
    Description

    Active Dog Licenses.

    All dog owners residing in NYC are required by law to license their dogs. The data is sourced from the DOHMH Dog Licensing System (https://a816-healthpsi.nyc.gov/DogLicense), where owners can apply for and renew dog licenses. Each record represents a unique dog license that was active during the year, but not necessarily a unique record per dog, since a license that is renewed during the year results in a separate record of an active license period. Each record stands as a unique license period for the dog over the course of the yearlong time frame.

  18. Bike Trips

    • kaggle.com
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel Ramos (2022). Bike Trips [Dataset]. https://www.kaggle.com/gabrielramos87/bike-trips/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Kaggle
    Authors
    Gabriel Ramos
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    A bike-sharing service is a shared transport service in which bicycles are made available for shared use to individuals on a short-term basis for a certain price or free. Many bike share systems allow people to borrow a bike from a station and return it at another station belonging to the same system.

    Content

    This dataset contains bike trips of a bike-sharing company in New York for one month. The dataset consists of ≈ 1.6M rows and 11 columns. The attributes are: 1. start_time (numeric): the time when a trip starts (in NYC local time). 2. stop_time (numeric): the time when a trip is over (in NYC local time). 3. start_station_id (categorical): a unique code to identify a station where a trip begins. 4. start_station_name (categorical): the name of a station where a trip begins. 5. end_station_id (categorical): a unique code to identify a station where a trip is over. 6. end_station_name (categorical): the name of a station where a trip is over. 7. user_type (categorical): the type of bike user. 8. bike_id (categorical): a unique code to identify a bike user. 9. gender (categorical): gender of the user. 10. age (numeric): age of the user. 11. trip_duration (numeric): the duration of a trip (in minutes).

    Acknowledgements

    The dataset was accessed from the big query public dataset. Photo by Michael Walk on Unsplash

    Inspiration

    Based on the above dataset, try to find the answer to the following questions. 1. Who is the largest group of users in May 2018? (to answer this question, you may group the users based on some variables, e.g. user_type, gender, and age group). 2. How was the daily trend of the number of trips and number of users in May 2018?
    3. What is the station that the users visit most in May 2018?

  19. Film Permits

    • data.cityofnewyork.us
    • data.ny.gov
    • +4more
    application/rdfxml +5
    Updated Mar 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayor’s Office of Media and Entertainment (MOME) (2025). Film Permits [Dataset]. https://data.cityofnewyork.us/City-Government/Film-Permits/tg4x-b46p
    Explore at:
    csv, json, tsv, application/rssxml, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Mayor's Office of Film, Theatre & Broadcastinghttp://www.nyc.gov/FILM
    Authors
    Mayor’s Office of Media and Entertainment (MOME)
    Description

    Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a street, or a park. See http://www1.nyc.gov/site/mome/permits/when-permit-required.page

  20. d

    DOHMH COVID-19 Antibody-by-Sex

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Sex [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-sex
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by sex. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-sex.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates. For further details, visit: • https://www1.nyc.gov/site/doh/covid/covid-19-data.pagehttps://github.com/nychealth/coronavirus-data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Health and Mental Hygiene (DOHMH) (2024). New York City Leading Causes of Death [Dataset]. https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/jb7j-dtam

New York City Leading Causes of Death

Explore at:
csv, json, tsv, xml, application/rssxml, application/rdfxmlAvailable download formats
Dataset updated
Dec 9, 2024
Dataset authored and provided by
Department of Health and Mental Hygiene (DOHMH)
Area covered
New York
Description

The leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City.

Report last ran: 09/24/2019
Rates based on small numbers (RSE > 30) as well as aggregate counts less than 5 have been suppressed in downloaded data

Source: Bureau of Vital Statistics and New York City Department of Health and Mental Hygiene

Search
Clear search
Close search
Google apps
Main menu