70 datasets found
  1. a

    Urban heat island severity for U.S. cities

    • keep-cool-global-community.hub.arcgis.com
    Updated Sep 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2019). Urban heat island severity for U.S. cities [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/TPL::urban-heat-island-severity-for-u-s-cities-1
    Explore at:
    Dataset updated
    Sep 12, 2019
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    United States
    Description

    This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset.Methodology: This dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  2. Urban Heat Islands

    • hub.arcgis.com
    • climate-center-lincolninstitute.hub.arcgis.com
    Updated Feb 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Urban Heat Islands [Dataset]. https://hub.arcgis.com/maps/UrbanObservatory::urban-heat-islands/about
    Explore at:
    Dataset updated
    Feb 12, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Description

    This scene contains the relative heat severity for every pixel for every city in the United States, from this source layer. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this scene is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.

  3. Morning Air Temperature in Cities - Urban Heat Islands

    • hub.arcgis.com
    • heat.gov
    • +2more
    Updated Nov 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2021). Morning Air Temperature in Cities - Urban Heat Islands [Dataset]. https://hub.arcgis.com/datasets/276f4621fda14bab83ca99041d18c321
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: air temperatureUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Afternoon Air Temperature and Evening Air Temperature. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Morning Air Temperature Observations in Floating-Point (°F)

  4. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  5. Morning Heat Index in Cities - Urban Heat Islands

    • hub.arcgis.com
    • heat.gov
    • +2more
    Updated Nov 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morning Heat Index in Cities - Urban Heat Islands [Dataset]. https://hub.arcgis.com/datasets/d2f5105d37a045f1b0756253756ba4a8
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: heat indexUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Afternoon Heat Index and Evening Heat Index. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Morning Heat Index Observations in Floating-Point (°F)

  6. Evening Air Temperature in Cities - Urban Heat Islands

    • heat.gov
    • community-climatesolutions.hub.arcgis.com
    • +2more
    Updated Nov 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2021). Evening Air Temperature in Cities - Urban Heat Islands [Dataset]. https://www.heat.gov/datasets/4653db8862ab4230acdf618903fd28c5
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: air temperatureUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Morning Air Temperature and Afternoon Air Temperature. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Evening Air Temperature Observations in Floating-Point (°F)

  7. Average annual temperature in the United States 1895-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  8. Afternoon Heat Index in Cities - Urban Heat Islands

    • hub.arcgis.com
    • heat.gov
    • +1more
    Updated Nov 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2021). Afternoon Heat Index in Cities - Urban Heat Islands [Dataset]. https://hub.arcgis.com/datasets/3b3a96cc4bab4958b0de0e1dcd90f9a8
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: heat indexUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Morning Heat Index and Evening Heat Index. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Afternoon Heat Index Observations in Floating-Point (°F)

  9. A

    Climate Ready Boston Social Vulnerability

    • data.boston.gov
    • cloudcity.ogopendata.com
    • +3more
    Updated Sep 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Maps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://data.boston.gov/dataset/climate-ready-boston-social-vulnerability
    Explore at:
    arcgis geoservices rest api, zip, csv, html, geojson, kmlAvailable download formats
    Dataset updated
    Sep 21, 2017
    Dataset provided by
    BostonMaps
    Authors
    Boston Maps
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Boston
    Description
    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses.

    Source:

    The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.

    Population Definitions:

    Older Adults:
    Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.
    Attribute label: OlderAdult

    Children:
    Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.
    Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.
    Attribute label: TotChild

    People of Color:
    People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups as
    well. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.
    Attribute label: POC2

    Limited English Proficiency:
    Without adequate English skills, residents can miss crucial information on how to prepare
    for hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more socially
    isolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.
    Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.
    Attribute label: LEP

    Low to no Income:
    A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.
    Attribute label: Low_to_No

    People with Disabilities:
    People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty.
    Attribute label: TotDis

    Medical Illness:
    Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.
    Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.
    Attribute label: MedIllnes

    Other attribute definitions:
    GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census Tract
    AREA_SQFT: Tract area (in square feet)
    AREA_ACRES: Tract area (in acres)
    POP100_RE: Tract population count
    HU100_RE: Tract housing unit count
    Name: Boston Neighborhood
  10. Morning Heat Index in Cities - Urban Heat Islands

    • heat.gov
    Updated Nov 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2021). Morning Heat Index in Cities - Urban Heat Islands [Dataset]. https://www.heat.gov/datasets/d2f5105d37a045f1b0756253756ba4a8
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: heat indexUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Afternoon Heat Index and Evening Heat Index. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Morning Heat Index Observations in Floating-Point (°F)

  11. Infrastructure Climate Resilience Assessment Data Starter Kit for United...

    • zenodo.org
    zip
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2024). Infrastructure Climate Resilience Assessment Data Starter Kit for United States Virgin Islands [Dataset]. http://doi.org/10.5281/zenodo.10796619
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    U.S. Virgin Islands
    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2023)
    • railways (OpenStreetMap, 2023)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  12. u

    Data for: Climate impacts and adaptation in US dairy systems 1981–2018

    • agdatacommons.nal.usda.gov
    bin
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Gisbert-Queral; Nathan Mueller (2025). Data for: Climate impacts and adaptation in US dairy systems 1981–2018 [Dataset]. http://doi.org/10.5281/zenodo.4818011
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Zenodo
    Authors
    Maria Gisbert-Queral; Nathan Mueller
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States
    Description

    Data is archived here: https://doi.org/10.5281/zenodo.4818011Data and code archive provides all the files that are necessary to replicate the empirical analyses that are presented in the paper "Climate impacts and adaptation in US dairy systems 1981-2018" authored by Maria Gisbert-Queral, Arne Henningsen, Bo Markussen, Meredith T. Niles, Ermias Kebreab, Angela J. Rigden, and Nathaniel D. Mueller and published in 'Nature Food' (2021, DOI: 10.1038/s43016-021-00372-z). The empirical analyses are entirely conducted with the "R" statistical software using the add-on packages "car", "data.table", "dplyr", "ggplot2", "grid", "gridExtra", "lmtest", "lubridate", "magrittr", "nlme", "OneR", "plyr", "pracma", "quadprog", "readxl", "sandwich", "tidyr", "usfertilizer", and "usmap". The R code was written by Maria Gisbert-Queral and Arne Henningsen with assistance from Bo Markussen. Some parts of the data preparation and the analyses require substantial amounts of memory (RAM) and computational power (CPU). Running the entire analysis (all R scripts consecutively) on a laptop computer with 32 GB physical memory (RAM), 16 GB swap memory, an 8-core Intel Xeon CPU E3-1505M @ 3.00 GHz, and a GNU/Linux/Ubuntu operating system takes around 11 hours. Running some parts in parallel can speed up the computations but bears the risk that the computations terminate when two or more memory-demanding computations are executed at the same time.This data and code archive contains the following files and folders:* READMEDescription: text file with this description* flowchart.pdfDescription: a PDF file with a flow chart that illustrates how R scripts transform the raw data files to files that contain generated data sets and intermediate results and, finally, to the tables and figures that are presented in the paper.* runAll.shDescription: a (bash) shell script that runs all R scripts in this data and code archive sequentially and in a suitable order (on computers with a "bash" shell such as most computers with MacOS, GNU/Linux, or Unix operating systems)* Folder "DataRaw"Description: folder for raw data filesThis folder contains the following files:- DataRaw/COWS.xlsxDescription: MS-Excel file with the number of cows per countySource: USDA NASS QuickstatsObservations: All available counties and years from 2002 to 2012- DataRaw/milk_state.xlsxDescription: MS-Excel file with average monthly milk yields per cowSource: USDA NASS QuickstatsObservations: All available states from 1981 to 2018- DataRaw/TMAX.csvDescription: CSV file with daily maximum temperaturesSource: PRISM Climate Group (spatially averaged)Observations: All counties from 1981 to 2018- DataRaw/VPD.csvDescription: CSV file with daily maximum vapor pressure deficitsSource: PRISM Climate Group (spatially averaged)Observations: All counties from 1981 to 2018- DataRaw/countynamesandID.csvDescription: CSV file with county names, state FIPS codes, and county FIPS codesSource: US Census BureauObservations: All counties- DataRaw/statecentroids.csvDescriptions: CSV file with latitudes and longitudes of state centroidsSource: Generated by Nathan Mueller from Matlab state shapefiles using the Matlab "centroid" functionObservations: All states* Folder "DataGenerated"Description: folder for data sets that are generated by the R scripts in this data and code archive. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these generated data files so that parts of the analysis can be replicated (e.g., on computers with insufficient memory to run all parts of the analysis).* Folder "Results"Description: folder for intermediate results that are generated by the R scripts in this data and code archive. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these intermediate results so that parts of the analysis can be replicated (e.g., on computers with insufficient memory to run all parts of the analysis).* Folder "Figures"Description: folder for the figures that are generated by the R scripts in this data and code archive and that are presented in our paper. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these figures so that people who replicate our analysis can more easily compare the figures that they get with the figures that are presented in our paper. Additionally, this folder contains CSV files with the data that are required to reproduce the figures.* Folder "Tables"Description: folder for the tables that are generated by the R scripts in this data and code archive and that are presented in our paper. In order to reproduce our entire analysis 'from scratch', the files in this folder should be deleted. We provide these tables so that people who replicate our analysis can more easily compare the tables that they get with the tables that are presented in our paper.* Folder "logFiles"Description: the shell script runAll.sh writes the output of each R script that it runs into this folder. We provide these log files so that people who replicate our analysis can more easily compare the R output that they get with the R output that we got.* PrepareCowsData.RDescription: R script that imports the raw data set COWS.xlsx and prepares it for the further analyses* PrepareWeatherData.RDescription: R script that imports the raw data sets TMAX.csv, VPD.csv, and countynamesandID.csv, merges these three data sets, and prepares the data for the further analyses* PrepareMilkData.RDescription: R script that imports the raw data set milk_state.xlsx and prepares it for the further analyses* CalcFrequenciesTHI_Temp.RDescription: R script that calculates the frequencies of days with the different THI bins and the different temperature bins in each month for each state* CalcAvgTHI.RDescription: R script that calculates the average THI in each state* PreparePanelTHI.RDescription: R script that creates a state-month panel/longitudinal data set with exposure to the different THI bins* PreparePanelTemp.RDescription: R script that creates a state-month panel/longitudinal data set with exposure to the different temperature bins* PreparePanelFinal.RDescription: R script that creates the state-month panel/longitudinal data set with all variables (e.g., THI bins, temperature bins, milk yield) that are used in our statistical analyses* EstimateTrendsTHI.RDescription: R script that estimates the trends of the frequencies of the different THI bins within our sampling period for each state in our data set* EstimateModels.RDescription: R script that estimates all model specifications that are used for generating results that are presented in the paper or for comparing or testing different model specifications* CalcCoefStateYear.RDescription: R script that calculates the effects of each THI bin on the milk yield for all combinations of states and years based on our 'final' model specification* SearchWeightMonths.RDescription: R script that estimates our 'final' model specification with different values of the weight of the temporal component relative to the weight of the spatial component in the temporally and spatially correlated error term* TestModelSpec.RDescription: R script that applies Wald tests and Likelihood-Ratio tests to compare different model specifications and creates Table S10* CreateFigure1a.RDescription: R script that creates subfigure a of Figure 1* CreateFigure1b.RDescription: R script that creates subfigure b of Figure 1* CreateFigure2a.RDescription: R script that creates subfigure a of Figure 2* CreateFigure2b.RDescription: R script that creates subfigure b of Figure 2* CreateFigure2c.RDescription: R script that creates subfigure c of Figure 2* CreateFigure3.RDescription: R script that creates the subfigures of Figure 3* CreateFigure4.RDescription: R script that creates the subfigures of Figure 4* CreateFigure5_TableS6.RDescription: R script that creates the subfigures of Figure 5 and Table S6* CreateFigureS1.RDescription: R script that creates Figure S1* CreateFigureS2.RDescription: R script that creates Figure S2* CreateTableS2_S3_S7.RDescription: R script that creates Tables S2, S3, and S7* CreateTableS4_S5.RDescription: R script that creates Tables S4 and S5* CreateTableS8.RDescription: R script that creates Table S8* CreateTableS9.RDescription: R script that creates Table S9

  13. United States US: Droughts, Floods, Extreme Temperatures: Average 1990-2009:...

    • ceicdata.com
    Updated Mar 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-droughts-floods-extreme-temperatures-average-19902009--of-population
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009
    Area covered
    United States
    Description

    United States US: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data was reported at 0.214 % in 2009. United States US: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data is updated yearly, averaging 0.214 % from Dec 2009 (Median) to 2009, with 1 observations. United States US: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Droughts, floods and extreme temperatures is the annual average percentage of the population that is affected by natural disasters classified as either droughts, floods, or extreme temperature events. A drought is an extended period of time characterized by a deficiency in a region's water supply that is the result of constantly below average precipitation. A drought can lead to losses to agriculture, affect inland navigation and hydropower plants, and cause a lack of drinking water and famine. A flood is a significant rise of water level in a stream, lake, reservoir or coastal region. Extreme temperature events are either cold waves or heat waves. A cold wave can be both a prolonged period of excessively cold weather and the sudden invasion of very cold air over a large area. Along with frost it can cause damage to agriculture, infrastructure, and property. A heat wave is a prolonged period of excessively hot and sometimes also humid weather relative to normal climate patterns of a certain region. Population affected is the number of people injured, left homeless or requiring immediate assistance during a period of emergency resulting from a natural disaster; it can also include displaced or evacuated people. Average percentage of population affected is calculated by dividing the sum of total affected for the period stated by the sum of the annual population figures for the period stated.; ; EM-DAT: The OFDA/CRED International Disaster Database: www.emdat.be, Université Catholique de Louvain, Brussels (Belgium), World Bank.; ;

  14. Evening Heat Index in Cities - Urban Heat Islands

    • heat-health-noaa.hub.arcgis.com
    • heat.gov
    • +1more
    Updated Nov 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2021). Evening Heat Index in Cities - Urban Heat Islands [Dataset]. https://heat-health-noaa.hub.arcgis.com/items/6bfa3811f45c40408832bd73cd799ab3
    Explore at:
    Dataset updated
    Nov 8, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: heat indexUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Morning Heat Index and Afternoon Heat Index. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Evening Heat Index Observations in Floating-Point (°F)

  15. Evening Heat Index per Block Group

    • noaa.hub.arcgis.com
    Updated Jan 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Evening Heat Index per Block Group [Dataset]. https://noaa.hub.arcgis.com/maps/noaa::evening-heat-index-per-block-group
    Explore at:
    Dataset updated
    Jan 31, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: Sensing package time step valuesUnits: decimal degrees Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA Strategies, U.S. Census BureauPublication Date: April 1, 2022What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Cities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Evening Heat Index (°F) for U.S. Census Block Groups for Cities in Texas, Vermont, Ohio, Michigan, Mississippi, New Mexico, Florida, Louisiana, Rhode Island, Virginia, California, Washington, Massachusetts, Hawaii, New York, Florida, Missouri, New Jersey, Indiana, North Carolina, and Puerto Rico

  16. Imagery Layer Afternoon Air Temperature in Sacramento

    • noaa.hub.arcgis.com
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Imagery Layer Afternoon Air Temperature in Sacramento [Dataset]. https://noaa.hub.arcgis.com/datasets/d37e1d138ee341f08cb7fab70bb62e91
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: Sensing package time step valuesUnits: decimal degrees Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Cities IncludedBaltimore, Boise, Boston, Fort Lauderdale, Honolulu, Los Angeles, Nampa, Oakland-Berkeley, Portland, Richmond, Sacramento, San Bernardino, San Juan, Victorville, Washington, West Palm Beach, Worcester, Charleston and YonkersCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Sacramento, CAMorning air temperatures in cities

  17. Image Layer Morning air temperature in Albuquerque NM

    • noaa.hub.arcgis.com
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Image Layer Morning air temperature in Albuquerque NM [Dataset]. https://noaa.hub.arcgis.com/datasets/277dfa907b98441c8f55d2611c336dc7
    Explore at:
    Dataset updated
    May 4, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: Sensing package time step valuesUnits: decimal degrees Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Cities IncludedBaltimore, Boise, Boston, Fort Lauderdale, Honolulu, Los Angeles, Nampa, Oakland-Berkeley, Portland, Richmond, Sacramento, San Bernardino, San Juan, Victorville, Washington, West Palm Beach, Worcester, Charleston and YonkersCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Albuquerque NM

  18. Seattle Afternoon Air Temperature

    • noaa.hub.arcgis.com
    Updated Jun 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Seattle Afternoon Air Temperature [Dataset]. https://noaa.hub.arcgis.com/maps/noaa::seattle-afternoon-air-temperature/about
    Explore at:
    Dataset updated
    Jun 21, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: Sensing package time step valuesUnits: decimal degrees Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Cities IncludedBaltimore, Boise, Boston, Fort Lauderdale, Honolulu, Los Angeles, Nampa, Oakland-Berkeley, Portland, Richmond, Sacramento, San Bernardino, San Juan, Victorville, Washington, West Palm Beach, Worcester, Charleston and YonkersCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Seattle, WAMorning air temperatures in cities

  19. Imagery Layer Afternoon Air Temperature in Harrisonburg

    • noaa.hub.arcgis.com
    Updated May 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Imagery Layer Afternoon Air Temperature in Harrisonburg [Dataset]. https://noaa.hub.arcgis.com/datasets/db6b023ba93e45539ebf9a575c324b8d
    Explore at:
    Dataset updated
    May 13, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: Sensing package time step valuesUnits: decimal degrees Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Cities IncludedBaltimore, Boise, Boston, Fort Lauderdale, Honolulu, Los Angeles, Nampa, Oakland-Berkeley, Portland, Richmond, Sacramento, San Bernardino, San Juan, Victorville, Washington, West Palm Beach, Worcester, Charleston and YonkersCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Harrisonburg, VAEvening air temperatures in cities

  20. Harrisonburg Morning Air Temperature

    • noaa.hub.arcgis.com
    Updated May 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Harrisonburg Morning Air Temperature [Dataset]. https://noaa.hub.arcgis.com/maps/ae5ff6e92eec404eae39304c9aa8de0c
    Explore at:
    Dataset updated
    May 13, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Description

    Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: Sensing package time step valuesUnits: decimal degrees Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Cities IncludedBaltimore, Boise, Boston, Fort Lauderdale, Honolulu, Los Angeles, Nampa, Oakland-Berkeley, Portland, Richmond, Sacramento, San Bernardino, San Juan, Victorville, Washington, West Palm Beach, Worcester, Charleston and YonkersCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Harrisonburg, VAEvening air temperatures in cities

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Trust for Public Land (2019). Urban heat island severity for U.S. cities [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/TPL::urban-heat-island-severity-for-u-s-cities-1

Urban heat island severity for U.S. cities

Explore at:
Dataset updated
Sep 12, 2019
Dataset authored and provided by
The Trust for Public Land
Area covered
United States
Description

This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset.Methodology: This dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource Center: https://www.epa.gov/heat-islands/heat-island-resourcesDr. Ladd Keith, University of Arizona: https://www.laddkeith.com/ Dr. Ben McMahan, University of Arizona: https://www.climas.arizona.edu/about/people/ben-mcmahan Dr. Jeremy Hoffman, Science Museum of Virginia: https://jeremyscotthoffman.com/about-me-shift#about Dr. Hunter Jones, NOAA: https://cpo.noaa.gov/News/News-Article/ArtMID/6226/ArticleID/971/CPOs-Hunter-Jones-delivers-keynote-on-Climate-and-Extreme-Heat-at-Design-for-Risk-Reduction-Symposium-in-NYC Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and Resiliency: https://youtu.be/sAHlqGDU0_4 Disclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

Search
Clear search
Close search
Google apps
Main menu