100+ datasets found
  1. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 29, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Jun 26, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 2:10 AM EASTERN ON JUNE 29

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  2. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  3. M

    World Death Rate (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Death Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/death-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    World, World
    Description

    Historical chart and dataset showing World death rate by year from 1950 to 2025.

  4. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(28125832), csv(60517511), csv(75015194), csv(60201673), csv(60676655), csv(74351424), csv(52019564), csv(60023260), csv(74689382), csv(51592721), csv(73906266), csv(15127221), csv(1128641), csv(5095), csv(11738570), zip, csv(74043128), csv(24235858), csv(74497014), csv(21575405)Available download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  5. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 29, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  7. Death in the United States

    • kaggle.com
    zip
    Updated Aug 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2017). Death in the United States [Dataset]. https://www.kaggle.com/datasets/cdc/mortality/code
    Explore at:
    zip(766333584 bytes)Available download formats
    Dataset updated
    Aug 3, 2017
    Dataset authored and provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.

    It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.

    Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.

    Overview

    This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.

    A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.

    All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.

    Project ideas

    • The CDC's mortality data was the basis of a widely publicized paper, by Anne Case and Nobel prize winner Angus Deaton, arguing that middle-aged whites are dying at elevated rates. One of the criticisms against the paper is that it failed to properly account for the exact ages within the broad bins available through the CDC's WONDER tool. What do these results look like with exact/not-binned age data?
    • Similarly, how sensitive are the mortality trends being discussed in the news to the choice of bin-widths?
    • As noted above, the data preparation process could have introduced errors. Can you find any discrepancies compared to the aggregate metrics on WONDER? If so, please let me know in the forums!
    • WONDER is cited in numerous economics, sociology, and public health research papers. Can you find any papers whose conclusions would be altered if they used the exact data available here rather than binned data from Wonder?

    Differences from the first version of the dataset

    • This version of the dataset was prepared in a completely different many. This has allowed us to provide a much larger volume of data and ensure that codes are available for every field.
    • We've replaced the batch of sql files with a single JSON per year. Kaggle's platform currently offer's better support for JSON files, and this keeps the number of files manageable.
    • A tutorial kernel providing a quick introduction to the new format is available here.
    • Lastly, I apologize if the transition has interrupted anyone's work! If need be, you can still download v1.
  8. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +3more
    csv, docx, html, xlsx
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, xlsx, htmlAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  9. Thailand TH: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Updated Feb 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Thailand TH: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/thailand/population-and-urbanization-statistics/th-death-rate-crude-per-1000-people
    Explore at:
    Dataset updated
    Feb 3, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Thailand
    Variables measured
    Population
    Description

    Thailand TH: Death Rate: Crude: per 1000 People data was reported at 7.872 Ratio in 2016. This records an increase from the previous number of 7.750 Ratio for 2015. Thailand TH: Death Rate: Crude: per 1000 People data is updated yearly, averaging 7.229 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 13.180 Ratio in 1960 and a record low of 5.663 Ratio in 1989. Thailand TH: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Thailand – Table TH.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  10. #IndiaNeedsOxygen Tweets

    • kaggle.com
    • opendatabay.com
    zip
    Updated Nov 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kash (2021). #IndiaNeedsOxygen Tweets [Dataset]. https://www.kaggle.com/kaushiksuresh147/indianeedsoxygen-tweets
    Explore at:
    zip(4441094 bytes)Available download formats
    Dataset updated
    Nov 14, 2021
    Authors
    Kash
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    India marks one COVID-19 death every 5 minutes

    https://ichef.bbci.co.uk/news/976/cpsprodpb/11C98/production/_118165827_gettyimages-1232465340.jpg" alt="">

    Content

    People across India scrambled for life-saving oxygen supplies on Friday and patients lay dying outside hospitals as the capital recorded the equivalent of one death from COVID-19 every five minutes.

    For the second day running, the country’s overnight infection total was higher than ever recorded anywhere in the world since the pandemic began last year, at 332,730.

    India’s second wave has hit with such ferocity that hospitals are running out of oxygen, beds, and anti-viral drugs. Many patients have been turned away because there was no space for them, doctors in Delhi said.

    https://s.yimg.com/ny/api/res/1.2/XhVWo4SOloJoXaQLrxxUIQ--/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MA--/https://s.yimg.com/os/creatr-uploaded-images/2021-04/8aa568f0-a3e0-11eb-8ff6-6b9a188e374a" alt="">

    Mass cremations have been taking place as the crematoriums have run out of space. Ambulance sirens sounded throughout the day in the deserted streets of the capital, one of India’s worst-hit cities, where a lockdown is in place to try and stem the transmission of the virus. source

    Dataset

    The dataset consists of the tweets made with the #IndiaWantsOxygen hashtag covering the tweets from the past week. The dataset totally consists of 25,440 tweets and will be updated on a daily basis.

    The description of the features is given below | No |Columns | Descriptions | | -- | -- | -- | | 1 | user_name | The name of the user, as they’ve defined it. | | 2 | user_location | The user-defined location for this account’s profile. | | 3 | user_description | The user-defined UTF-8 string describing their account. | | 4 | user_created | Time and date, when the account was created. | | 5 | user_followers | The number of followers an account currently has. | | 6 | user_friends | The number of friends an account currently has. | | 7 | user_favourites | The number of favorites an account currently has | | 8 | user_verified | When true, indicates that the user has a verified account | | 9 | date | UTC time and date when the Tweet was created | | 10 | text | The actual UTF-8 text of the Tweet | | 11 | hashtags | All the other hashtags posted in the tweet along with #IndiaWantsOxygen | | 12 | source | Utility used to post the Tweet, Tweets from the Twitter website have a source value - web | | 13 | is_retweet | Indicates whether this Tweet has been Retweeted by the authenticating user. |

    Acknowledgements

    https://globalnews.ca/news/7785122/india-covid-19-hospitals-record/ Image courtesy: BBC and Reuters

    Inspiration

    The past few days have been really depressing after seeing these incidents. These tweets are the voice of the indians requesting help and people all over the globe asking their own countries to support India by providing oxygen tanks.

    And I strongly believe that this is not just some data, but the pure emotions of people and their call for help. And I hope we as data scientists could contribute on this front by providing valuable information and insights.

  11. A

    ‘Missing Migrants Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Apr 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘Missing Migrants Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-missing-migrants-dataset-c736/2e62d69f/?v=grid
    Explore at:
    Dataset updated
    Apr 23, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Missing Migrants Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jmataya/missingmigrants on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    About the Missing Migrants Data

    This data is sourced from the International Organization for Migration. The data is part of a specific project called the Missing Migrants Project which tracks deaths of migrants, including refugees , who have gone missing along mixed migration routes worldwide. The research behind this project began with the October 2013 tragedies, when at least 368 individuals died in two shipwrecks near the Italian island of Lampedusa. Since then, Missing Migrants Project has developed into an important hub and advocacy source of information that media, researchers, and the general public access for the latest information.

    Where is the data from?

    Missing Migrants Project data are compiled from a variety of sources. Sources vary depending on the region and broadly include data from national authorities, such as Coast Guards and Medical Examiners; media reports; NGOs; and interviews with survivors of shipwrecks. In the Mediterranean region, data are relayed from relevant national authorities to IOM field missions, who then share it with the Missing Migrants Project team. Data are also obtained by IOM and other organizations that receive survivors at landing points in Italy and Greece. In other cases, media reports are used. IOM and UNHCR also regularly coordinate on such data to ensure consistency. Data on the U.S./Mexico border are compiled based on data from U.S. county medical examiners and sheriff’s offices, as well as media reports for deaths occurring on the Mexico side of the border. Estimates within Mexico and Central America are based primarily on media and year-end government reports. Data on the Bay of Bengal are drawn from reports by UNHCR and NGOs. In the Horn of Africa, data are obtained from media and NGOs. Data for other regions is drawn from a combination of sources, including media and grassroots organizations. In all regions, Missing Migrants Projectdata represents minimum estimates and are potentially lower than in actuality.

    Updated data and visuals can be found here: https://missingmigrants.iom.int/

    Who is included in Missing Migrants Project data?

    IOM defines a migrant as any person who is moving or has moved across an international border or within a State away from his/her habitual place of residence, regardless of

      (1) the person’s legal status; 
      (2) whether the movement is voluntary or involuntary; 
      (3) what the causes for the movement are; or 
      (4) what the length of the stay is.[1]
    

    Missing Migrants Project counts migrants who have died or gone missing at the external borders of states, or in the process of migration towards an international destination. The count excludes deaths that occur in immigration detention facilities, during deportation, or after forced return to a migrant’s homeland, as well as deaths more loosely connected with migrants’ irregular status, such as those resulting from labour exploitation. Migrants who die or go missing after they are established in a new home are also not included in the data, so deaths in refugee camps or housing are excluded. This approach is chosen because deaths that occur at physical borders and while en route represent a more clearly definable category, and inform what migration routes are most dangerous. Data and knowledge of the risks and vulnerabilities faced by migrants in destination countries, including death, should not be neglected, rather tracked as a distinct category.

    How complete is the data on dead and missing migrants?

    Data on fatalities during the migration process are challenging to collect for a number of reasons, most stemming from the irregular nature of migratory journeys on which deaths tend to occur. For one, deaths often occur in remote areas on routes chosen with the explicit aim of evading detection. Countless bodies are never found, and rarely do these deaths come to the attention of authorities or the media. Furthermore, when deaths occur at sea, frequently not all bodies are recovered - sometimes with hundreds missing from one shipwreck - and the precise number of missing is often unknown. In 2015, over 50 per cent of deaths recorded by the Missing Migrants Project refer to migrants who are presumed dead and whose bodies have not been found, mainly at sea.

    Data are also challenging to collect as reporting on deaths is poor, and the data that does exist are highly scattered. Few official sources are collecting data systematically. Many counts of death rely on media as a source. Coverage can be spotty and incomplete. In addition, the involvement of criminal actors in incidents means there may be fear among survivors to report deaths and some deaths may be actively covered-up. The irregular immigration status of many migrants, and at times their families as well, also impedes reporting of missing persons or deaths.

    The varying quality and comprehensiveness of data by region in attempting to estimate deaths globally may exaggerate the share of deaths that occur in some regions, while under-representing the share occurring in others.

    What can be understood through this data?

    The available data can give an indication of changing conditions and trends related to migration routes and the people travelling on them, which can be relevant for policy making and protection plans. Data can be useful to determine the relative risks of irregular migration routes. For example, Missing Migrants Project data show that despite the increase in migrant flows through the eastern Mediterranean in 2015, the central Mediterranean remained the more deadly route. In 2015, nearly two people died out of every 100 travellers (1.85%) crossing the Central route, as opposed to one out of every 1,000 that crossed from Turkey to Greece (0.095%). From the data, we can also get a sense of whether groups like women and children face additional vulnerabilities on migration routes.

    However, it is important to note that because of the challenges in data collection for the missing and dead, basic demographic information on the deceased is rarely known. Often migrants in mixed migration flows do not carry appropriate identification. When bodies are found it may not be possible to identify them or to determine basic demographic information. In the data compiled by Missing Migrants Project, sex of the deceased is unknown in over 80% of cases. Region of origin has been determined for the majority of the deceased. Even this information is at times extrapolated based on available information – for instance if all survivors of a shipwreck are of one origin it was assumed those missing also came from the same region.

    The Missing Migrants Project dataset includes coordinates for where incidents of death took place, which indicates where the risks to migrants may be highest. However, it should be noted that all coordinates are estimates.

    Why collect data on missing and dead migrants?

    By counting lives lost during migration, even if the result is only an informed estimate, we at least acknowledge the fact of these deaths. What before was vague and ill-defined is now a quantified tragedy that must be addressed. Politically, the availability of official data is important. The lack of political commitment at national and international levels to record and account for migrant deaths reflects and contributes to a lack of concern more broadly for the safety and well-being of migrants, including asylum-seekers. Further, it drives public apathy, ignorance, and the dehumanization of these groups.

    Data are crucial to better understand the profiles of those who are most at risk and to tailor policies to better assist migrants and prevent loss of life. Ultimately, improved data should contribute to efforts to better understand the causes, both direct and indirect, of fatalities and their potential links to broader migration control policies and practices.

    Counting and recording the dead can also be an initial step to encourage improved systems of identification of those who die. Identifying the dead is a moral imperative that respects and acknowledges those who have died. This process can also provide a some sense of closure for families who may otherwise be left without ever knowing the fate of missing loved ones.

    Identification and tracing of the dead and missing

    As mentioned above, the challenge remains to count the numbers of dead and also identify those counted. Globally, the majority of those who die during migration remain unidentified. Even in cases in which a body is found identification rates are low. Families may search for years or a lifetime to find conclusive news of their loved one. In the meantime, they may face psychological, practical, financial, and legal problems.

    Ultimately Missing Migrants Project would like to see that every unidentified body, for which it is possible to recover, is adequately “managed”, analysed and tracked to ensure proper documentation, traceability and dignity. Common forensic protocols and standards should be agreed upon, and used within and between States. Furthermore, data relating to the dead and missing should be held in searchable and open databases at local, national and international levels to facilitate identification.

    For more in-depth analysis and discussion of the numbers of missing and dead migrants around the world, and the challenges involved in identification and tracing, read our two reports on the issue, Fatal Journeys: Tracking Lives Lost during Migration (2014) and Fatal Journeys Volume 2, Identification and Tracing of Dead and Missing Migrants

    Content

    The data set records

  12. Coronavirus Worldwide Dataset

    • kaggle.com
    Updated Aug 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Raj (2020). Coronavirus Worldwide Dataset [Dataset]. https://www.kaggle.com/saurabhraj19/coronavirus-worldwide-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 11, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saurabh Raj
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    The European CDC publishes daily statistics on the COVID-19 pandemic. Not just for Europe, but for the entire world. We rely on the ECDC as they collect and harmonize data from around the world which allows us to compare what is happening in different countries.

    Content

    This dataset has daily level information on the number of affected cases, deaths and recovery etc. from coronavirus. It also contains various other parameters like average life expectancy, population density, smocking population etc. which users can find useful in further prediction that they need to make.

    The data is available from 31 Dec,2019.

    Inspiration

    Give people weekly data so that they can use it to make accurate predictions.

  13. f

    ORBIT: A real-world few-shot dataset for teachable object recognition...

    • city.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann (2023). ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision [Dataset]. http://doi.org/10.25383/city.14294597.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    City, University of London
    Authors
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.

  14. Norway NO: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Updated Jun 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Norway NO: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/norway/population-and-urbanization-statistics/no-death-rate-crude-per-1000-people
    Explore at:
    Dataset updated
    Jun 15, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Norway
    Variables measured
    Population
    Description

    Norway NO: Death Rate: Crude: per 1000 People data was reported at 7.800 Ratio in 2016. This stayed constant from the previous number of 7.800 Ratio for 2015. Norway NO: Death Rate: Crude: per 1000 People data is updated yearly, averaging 10.000 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 10.900 Ratio in 1990 and a record low of 7.800 Ratio in 2016. Norway NO: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  15. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  16. Laos LA: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Laos LA: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/laos/population-and-urbanization-statistics/la-death-rate-crude-per-1000-people
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Laos
    Variables measured
    Population
    Description

    Laos LA: Death Rate: Crude: per 1000 People data was reported at 6.663 Ratio in 2016. This records a decrease from the previous number of 6.754 Ratio for 2015. Laos LA: Death Rate: Crude: per 1000 People data is updated yearly, averaging 14.381 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 20.321 Ratio in 1960 and a record low of 6.663 Ratio in 2016. Laos LA: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Laos – Table LA.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  17. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/latest
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  18. f

    Data from: Epidemiology, resource use, and treatment patterns of locally...

    • tandf.figshare.com
    docx
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florence Joly; Stephane Culine; Morgan Roupret; Aurore Tricotel; Emilie Casarotto; Sandrine Brice; Rafael Minacori; Marthe Vuillet; Marie-Catherine Thomas; Kirsten Leyland; Anil Upadhyay; Vicki Munro; Torsten Strunz-McKendry (2025). Epidemiology, resource use, and treatment patterns of locally advanced or metastatic urothelial carcinoma in France [Dataset]. http://doi.org/10.6084/m9.figshare.28450102.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Florence Joly; Stephane Culine; Morgan Roupret; Aurore Tricotel; Emilie Casarotto; Sandrine Brice; Rafael Minacori; Marthe Vuillet; Marie-Catherine Thomas; Kirsten Leyland; Anil Upadhyay; Vicki Munro; Torsten Strunz-McKendry
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    Describe real-world epidemiology, treatment patterns, health care resource utilization, and costs of locally advanced or metastatic urothelial carcinoma (la/mUC) in France. Retrospective study including all adults with la/mUC diagnosis during January 2017 to December 2020 in the PMSI database. Annual prevalence and incidence ranged from 36.4 to 38.9 and 16.4 to 18.5 cases per 100,000 people, respectively. Of the 25,314 patients with incident la/mUC, 37.6% did not receive first-line systemic treatment. Of the 14,656 patients who started first-line systemic treatment, 66.6%, 22.5%, and 10.9% received 1, 2, and 3 lines of therapy, respectively. Annual per-patient costs in second-/third-line setting ranged from €8803 to €16,012. The substantial disease burden of la/mUC in France highlights the unmet need for new therapies. What is this article about? Urothelial carcinoma (UC) is a type of cancer affecting the urinary system. It can spread to other parts of the body, described as locally advanced or metastatic (la/m). We used information from a French database recording hospitalizations in France to find out how many people have la/mUC, how many new cases develop each year, what treatments they receive, how many die in the hospital, and how much their care costs. What were the results? Based on database information, 37 to 39 of every 100,000 people have la/mUC and 17 to 19 of every 100,000 people are identified with a new case yearly. Slightly more than one-third of patients with la/mUC did not receive recommended treatment (chemotherapy) when first diagnosed. Chemotherapy was the most common treatment type for the first, second, or third treatment; checkpoint inhibitors (a unique treatment) became more commonly used as a second treatment over time. Yearly in-hospital death rates were high, ranging from 47.8% of patients who died within 1 year from diagnosis to 62.9% dying within 3 years. Yearly cost of care was high (costing €8803 to €16,012) in patients starting a second or third treatment. What do the results of the study mean? The study shows many patients may not be fit enough or choose not to receive treatment. Even those receiving treatment are at high risk for poor outcomes. The burden of la/mUC in France is high, underscoring the need for more therapies and better supportive care early in disease management.

  19. A

    ‘WHO national life expectancy ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Oct 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘WHO national life expectancy ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-who-national-life-expectancy-c4c7/d31e495e/?iid=008-895&v=presentation
    Explore at:
    Dataset updated
    Oct 30, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘WHO national life expectancy ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mmattson/who-national-life-expectancy on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    I am developing my data science skills in areas outside of my previous work. An interesting problem for me was to identify which factors influence life expectancy on a national level. There is an existing Kaggle data set that explored this, but that information was corrupted. Part of the problem solving process is to step back periodically and ask "does this make sense?" Without reasonable data, it is harder to notice mistakes in my analysis code (as opposed to unusual behavior due to the data itself). I wanted to make a similar data set, but with reliable information.

    This is my first time exploring life expectancy, so I had to guess which features might be of interest when making the data set. Some were included for comparison with the other Kaggle data set. A number of potentially interesting features (like air pollution) were left off due to limited year or country coverage. Since the data was collected from more than one server, some features are present more than once, to explore the differences.

    Content

    A goal of the World Health Organization (WHO) is to ensure that a billion more people are protected from health emergencies, and provided better health and well-being. They provide public data collected from many sources to identify and monitor factors that are important to reach this goal. This set was primarily made using GHO (Global Health Observatory) and UNESCO (United Nations Educational Scientific and Culture Organization) information. The set covers the years 2000-2016 for 183 countries, in a single CSV file. Missing data is left in place, for the user to decide how to deal with it.

    Three notebooks are provided for my cursory analysis, a comparison with the other Kaggle set, and a template for creating this data set.

    Inspiration

    There is a lot to explore, if the user is interested. The GHO server alone has over 2000 "indicators". - How are the GHO and UNESCO life expectancies calculated, and what is causing the difference? That could also be asked for Gross National Income (GNI) and mortality features. - How does the life expectancy after age 60 compare to the life expectancy at birth? Is the relationship with the features in this data set different for those two targets? - What other indicators on the servers might be interesting to use? Some of the GHO indicators are different studies with different coverage. Can they be combined to make a more useful and robust data feature? - Unraveling the correlations between the features would take significant work.

    --- Original source retains full ownership of the source dataset ---

  20. i

    Household Demographic Surveillance System, Cause-Specific Mortality...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Osman A. Sankoh (2019). Household Demographic Surveillance System, Cause-Specific Mortality 1992-2012 - World [Dataset]. https://catalog.ihsn.org/catalog/5541
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Abdramane Soura
    Amelia Crampin
    Abba Bhuiya
    Stephen M. Tollman
    Wasif A. Khan
    Frank O. Odhiambo
    Peter Byass
    P. Kim Streatfield
    Ali Sie
    Shashi Kant
    Bassirou Bonfoh
    Valérie Delaunay
    Nurul Alam
    Berhe Weldearegawi
    Momodou Jasseh
    Thomas N. Williams
    Nguyen T.K. Chuc
    Alex Ezeh
    Osman A. Sankoh
    Margaret Gyapong
    Siswanto Wilopo
    Abraham J. Herbst
    Abraham Oduro
    Marcel Tanner
    Sanjay Juvekar
    Time period covered
    1992 - 2012
    Area covered
    World, World
    Description

    Abstract

    Cause of death data based on VA interviews were contributed by fourteen INDEPTH HDSS sites in sub-Saharan Africa and eight sites in Asia. The principles of the Network and its constituent population surveillance sites have been described elsewhere [1]. Each HDSS site is committed to long-term longitudinal surveillance of circumscribed populations, typically each covering around 50,000 to 100,000 people. Households are registered and visited regularly by lay field-workers, with a frequency varying from once per year to several times per year. All vital events are registered at each such visit, and any deaths recorded are followed up with verbal autopsy interviews, usually 147 undertaken by specially trained lay interviewers. A few sites were already operational in the 1990s, but in this dataset 95% of the person-time observed related to the period from 2000 onwards, with 58% from 2007 onwards. Two sites, in Nairobi and Ouagadougou, followed urban populations, while the remainder covered areas that were generally more rural in character, although some included local urban centres. Sites covered entire populations, although the Karonga, Malawi, site only contributed VAs for deaths of people aged 12 years and older. Because the sites were not located or designed in a systematic way to be representative of national or regional populations, it is not meaningful to aggregate results over sites.

    All cause of death assignments in this dataset were made using the InterVA-4 model version 4.02 [2]. InterVA-4 uses probabilistic modelling to arrive at likely cause(s) of death for each VA case, the workings of the model being based on a combination of expert medical opinion and relevant available data. InterVA-4 is the only model currently available that processes VA data according to the WHO 2012 standard and categorises causes of death according to ICD-10. Since the VA data reported here were collected before the WHO 2012 standard was formulated, they were all retrospectively transformed into the WHO 2012 and InterVA-4 input format for processing.

    The InterVA-4 model was applied to the data from each site, yielding, for each case, up to three possible causes of death or an indeterminate result. Each cause for a case is a single record in the dataset. In a minority of cases, for example where symptoms were vague, contradictory or mutually inconsistent, it was impossible for InterVA-4 to determine a cause of death, and these deaths were attributed as entirely indeterminate. For the remaining cases, one to three likely causes and their likelihoods were assigned by InterVA-4, and if the sum of their likelihoods was less than one, the residual component was then assigned as being indeterminate. This was an important process for capturing uncertainty in cause of death outcome(s) from the model at the individual level, thus avoiding over-interpretation of specific causes. As a consequence there were three sources of unattributed cause of death: deaths registered for which VAs were not successfully completed; VAs completed but where the cause was entirely indeterminate; and residual components of deaths attributed as indeterminate.

    In this dataset each case has between one and four records, each with its own cause and likelihood. Cases for which VAs were not successfully completed has a single record with the cause of death recorded as “VA not completed” and a likelihood of one. Thus the overall sum of the likelihoods equated to the total number of deaths. Each record also contains a population weighting factor reflecting the ratio of the population fraction for its site, age group, sex and year to the corresponding age group and sex fraction in the standard population (see section on weighting).

    In this context, all of these data are secondary datasets derived from primary data collected separately by each participating site. In all cases the primary data collection was covered by site-level ethical approvals relating to on-going demographic surveillance in those specific locations. No individual identity or household location data are included in this secondary data.

    1. Sankoh O, Byass P. The INDEPTH Network: filling vital gaps in global epidemiology. International Journal of Epidemiology 2012; 41:579-588.

    2. Byass P, Chandramohan D, Clark SJ, D’Ambruoso L, Fottrell E, Graham WJ, et al. Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. Global Health Action 2012; 5:19281.

    Geographic coverage

    Demographic surveiallance areas (countries from Africa, Asia and Oceania) of the following HDSSs:

    Code  Country    INDEPTH Centre
    BD011 Bangladesh ICDDR-B : Matlab
    BD012 Bangladesh ICDDR-B : Bandarban
    BD013 Bangladesh ICDDR-B : Chakaria
    BD014 Bangladesh ICDDR-B : AMK BF031 Burkina Faso Nouna BF041 Burkina Faso Ouagadougou
    CI011 Côte d'Ivoire Taabo ET031 Ethiopia Kilite Awlaelo
    GH011 Ghana Navrongo
    GH031 Ghana Dodowa
    GM011 The Gambia Farafenni ID011 Indonesia Purworejo IN011 India Ballabgarh
    IN021 India Vadu
    KE011 Kenya Kilifi
    KE021 Kenya Kisumu
    KE031 Kenya Nairobi
    MW011 Malawi Karonga
    SN011 Senegal IRD : Bandafassi VN012 Vietnam Hanoi Medical University : Filabavi
    ZA011 South Africa Agincourt ZA031 South Africa Africa Centre

    Analysis unit

    Death Cause

    Universe

    Surveillance population Deceased individuals Cause of death

    Kind of data

    Verbal autopsy-based cause of death data

    Frequency of data collection

    Rounds per year varies between sites from once to three times per year

    Sampling procedure

    No sampling, covers total population in demographic surveillance area

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Verbal Autopsy Questionnaires used by the various sites differed, but in most cases they were a derivation from the original WHO Verbal Autopsy questionnaire.

    http://www.who.int/healthinfo/statistics/verbalautopsystandards/en/index1.html

    Cleaning operations

    One cause of death record was inserted for every death where a verbal autopsy was not conducted. The cuase of death assigned in these cases is "XX VA not completed"

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public

Mass Killings in America, 2006 - present

Data from the AP-USA TODAY-Northeastern project tracking the killings of four or more victims from 2006-present

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
zip, csvAvailable download formats
Dataset updated
Jun 29, 2025
Authors
The Associated Press
Time period covered
Jan 1, 2006 - Jun 26, 2025
Area covered
Description

THIS DATASET WAS LAST UPDATED AT 2:10 AM EASTERN ON JUNE 29

OVERVIEW

2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

A total of 229 people died in mass killings in 2019.

The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

One-third of the offenders died at the scene of the killing or soon after, half from suicides.

About this Dataset

The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

This data will be updated periodically and can be used as an ongoing resource to help cover these events.

Using this Dataset

To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

Mass killings by year

Mass shootings by year

To get these counts just for your state:

Filter killings by state

Definition of "mass murder"

Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

Methodology

Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

This project started at USA TODAY in 2012.

Contacts

Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

Search
Clear search
Close search
Google apps
Main menu