This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Home Office also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
The Home Office has responsibility for fire services in England. The vast majority of data tables produced by the Home Office are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and http://www.nifrs.org/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/6787aa6c2cca34bdaf58a257/fire-statistics-data-tables-fire0101-230125.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 94 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/6787ace93f1182a1e258a25c/fire-statistics-data-tables-fire0102-230125.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.51 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/6787b036868b2b1923b64648/fire-statistics-data-tables-fire0103-230125.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 123 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/6787b3ac868b2b1923b6464d/fire-statistics-data-tables-fire0104-230125.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 295 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/6787b4323f1182a1e258a26a/fire-statistics-data-tables-fire0201-230125.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 111 KB) <a href="https://www.gov.uk/government/statistical-data-sets/fire0201-previous-data-t
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
ONS Mid-year estimates (MYE) of resident populations for London boroughs are available in the following files:
Read the GLA Intelligence Updates about the MYE data for 2011 and 2012.
Mid-year population by single year of age (SYA) and sex, for each year 1999 to 2014.
ONS mid-year estimates data back to 1961 total population for each year since 1961.
These files take into account the revised estimates released in 2010.
Ward level Population Estimates
London wards single year of age data covering each year since 2002.
Custom Age Range Tool
An Excel tool is available that uses Single year of age data that enables users to select any age range required.
ONS policy is to publish population estimates rounded to at least the nearest hundred persons. Estimates by single year of age, and the detailed components of change are provided in units to facilitate further calculations. They cannot be guaranteed to be as exact as the level of detail implied by unit figures.
Estimates are calculated by single year of age but these figures are less reliable and ONS advise that they should be aggregated to at least five-year age groupings for use in further calculations, onwards circulation, or for presentation purposes. (Splitting into 0 year olds and 1-4 year olds is an acceptable exception).
ONS mid-year population estimates data by 5 year age groups going all the way back to 1981, are available on the NOMIS website.
Data are Crown Copyright and users should include a source accreditation to ONS - Source: Office for National Statistics. Under the terms of the Open Government License (OGL) and UK Government Licensing Framework, anyone wishing to use or re-use ONS material, whether commercially or privately, may do so freely without a specific application. For further information, go to http://www.nationalarchives.gov.uk/doc/open-government-licence/ or phone 020 8876 3444.
For a detailed explanation of the methodology used in population estimates, see papers available on the Population Estimates section of the ONS website. Additional information can also be obtained from Population Estimates Customer Services at pop.info@ons.gsi.gov.uk (Tel: 01329 444661).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual UK and constituent country figures for births, deaths, marriages, divorces, civil partnerships and civil partnership dissolutions.
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
New reweighting policy
Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.
An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
2022 Weighting
The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.
Latest edition information
For the sixth edition (February 2025), the data file was resupplied with the 2024 weighting variable included (LGWT24).
The National Child Development Study (NCDS) is a continuing longitudinal study that seeks to follow the lives of all those living in Great Britain who were born in one particular week in 1958. The aim of the study is to improve understanding of the factors affecting human development over the whole lifespan.
The NCDS has its origins in the Perinatal Mortality Survey (PMS) (the original PMS study is held at the UK Data Archive under SN 2137). This study was sponsored by the National Birthday Trust Fund and designed to examine the social and obstetric factors associated with stillbirth and death in early infancy among the 17,000 children born in England, Scotland and Wales in that one week. Selected data from the PMS form NCDS sweep 0, held alongside NCDS sweeps 1-3, under SN 5565.
Survey and Biomeasures Data (GN 33004):
To date there have been nine attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. The first three sweeps were carried out by the National Children's Bureau, in 1965, when respondents were aged 7, in 1969, aged 11, and in 1974, aged 16 (these sweeps form NCDS1-3, held together with NCDS0 under SN 5565). The fourth sweep, also carried out by the National Children's Bureau, was conducted in 1981, when respondents were aged 23 (held under SN 5566). In 1985 the NCDS moved to the Social Statistics Research Unit (SSRU) - now known as the Centre for Longitudinal Studies (CLS). The fifth sweep was carried out in 1991, when respondents were aged 33 (held under SN 5567). For the sixth sweep, conducted in 1999-2000, when respondents were aged 42 (NCDS6, held under SN 5578), fieldwork was combined with the 1999-2000 wave of the 1970 Birth Cohort Study (BCS70), which was also conducted by CLS (and held under GN 33229). The seventh sweep was conducted in 2004-2005 when the respondents were aged 46 (held under SN 5579), the eighth sweep was conducted in 2008-2009 when respondents were aged 50 (held under SN 6137) and the ninth sweep was conducted in 2013 when respondents were aged 55 (held under SN 7669).
Four separate datasets covering responses to NCDS over all sweeps are available. National Child Development Deaths Dataset: Special Licence Access (SN 7717) covers deaths; National Child Development Study Response and Outcomes Dataset (SN 5560) covers all other responses and outcomes; National Child Development Study: Partnership Histories (SN 6940) includes data on live-in relationships; and National Child Development Study: Activity Histories (SN 6942) covers work and non-work activities. Users are advised to order these studies alongside the other waves of NCDS.
From 2002-2004, a Biomedical Survey was completed and is available under End User Licence (EUL) (SN 8731) and Special Licence (SL) (SN 5594). Proteomics analyses of blood samples are available under SL SN 9254.
Linked Geographical Data (GN 33497):
A number of geographical variables are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies.
Linked Administrative Data (GN 33396):
A number of linked administrative datasets are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies. These include a Deaths dataset (SN 7717) available under SL and the Linked Health Administrative Datasets (SN 8697) available under Secure Access.
Additional Sub-Studies (GN 33562):
In addition to the main NCDS sweeps, further studies have also been conducted on a range of subjects such as parent migration, unemployment, behavioural studies and respondent essays. The full list of NCDS studies available from the UK Data Service can be found on the NCDS series access data webpage.
How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
For information on how to access biomedical data from NCDS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.
Further information about the full NCDS series can be found on the Centre for Longitudinal Studies website.
The National Child Development Deaths Dataset, 1958-2014: Special Licence Access contains data on known deaths among members of the NCDS birth cohort from 1958 to 2013. Information on deaths has been taken from the records maintained by the organisations responsible for the study over the life time of the study: the National Birthday Trust Fund, the National Children’s Bureau (NCB), the Social Statistics Research Unit (SSRU) and the CLS. The information has been gleaned from a variety of sources, including death certificates and other information from the National Health Service Central Register (NHSCR), and from relatives and friends during survey activities and cohort maintenance work by telephone, letter and e-mail. It includes all deaths up to 31st December 2013. In only 6 cases are the date of death unknown. By the end of December 8.7 per cent of the cohort were known to have died.
The National Child Development Study Response and Outcomes Dataset, 1958-2013 (SN 5560) covers other responses and outcomes of the cohort members and should be used alongside this dataset.
For the 3rd edition (July 2018) an updated version of the data was deposited. The new edition includes data on known deaths among members of the National Child Development Study (NCDS) birth cohort up to 2016. The user guide has also been updated.
Excess Winter Deaths (EWD) by age and conditions (underlying cause of death) expressed as average per year based on 7 years pooled data, 2004-2011. EWD trend expressed as average per year based on 3 years data.
The Excess Winter Mortality Index (EWM Index was calculated based on the 'ONS Method' which defines the winter period as December to March, and the non-winter period as August to November of that same year and April to July of the following year.
This winter period was selected as they are the months which over the last 50 years have displayed above average monthly mortality. However, if mortality starts to increase prior to this, for example in November, the number of deaths in the non-winter period will increase, which in turn will decrease the estimate of excess winter mortality.
The EWM Index will be partly dependent on the proportion of older people in the population as most excess winter deaths effect older people (there is no standardisation in this calculation by age or any other factor).
Excess winter mortality is calculated as winter deaths (deaths occurring in December to March) minus the average of non-winter deaths (April to July of the current year and August to November of the previous year). The Excess winter mortality index is calculated as excess winter deaths divided by the average non-winter deaths, expressed as a percentage.
Relevant link: http://www.wmpho.org.uk/excesswinterdeathsinEnglandatlas/
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Data files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
Tables VEH0101 and VEH1104 have not yet been revised to include the recent changes to Large Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV) definitions for data earlier than 2023 quarter 4. This will be amended as soon as possible.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/66f15b9b76558d051527abd7/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 147 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/66436667993111924d9d3426/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 42.6 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/66f15b9c34de29965b489bcd/veh0105.ods">Licensed vehicles at the end of the quarter by body type, fuel type, keepership (private and company) and upper and lower tier local authority: Great Britain and United Kingdom (ODS, 15.8 MB)
VEH0206: https://assets.publishing.service.gov.uk/media/664369fc4f29e1d07fadc707/veh0206.ods">Licensed cars at the end of the year by VED band and carbon dioxide (CO2) emissions: Great Britain and United Kingdom (ODS, 39.8 KB)
VEH0506: https://assets.publishing.service.gov.uk/media/6287bf83d3bf7f1f44695437/veh0506.ods">Licensed heavy goods vehicles at the end of the year by gross vehicle weight (tonnes): Great Britain and United Kingdom (ODS, 13.8 KB)
VEH0601: https://assets.publishing.service.gov.uk/media/66436cacae748c43d3793ad2/veh0601.ods">Licensed buses and coaches at the end of the year by body type detail: Great Britain and United Kingdom (ODS, 23.9 KB)
VEH1102: https://assets.publishing.service.gov.uk/media/66437bb9ae748c43d3793ae0/veh1102.ods">Licensed vehicles at the end of the year by body type and keepership (private and company): Great Britain and United Kingdom (ODS, 140 KB)
VEH1103: https://assets.publishing.service.gov.uk/media/66f15b9c76558d051527abda/veh1103.ods">Licensed vehicles
This page contains data for the immigration system statistics up to March 2023.
For current immigration system data, visit ‘Immigration system statistics data tables’.
https://assets.publishing.service.gov.uk/media/6462567294f6df000cf5ea90/detention-datasets-mar-2023.xlsx">Immigration detention (MS Excel Spreadsheet, 9.8 MB)
Det_D01: Number of entries into immigration detention by nationality, age, sex and initial place of detention
Det_D02: Number of people in immigration detention at the end of each quarter by nationality, age, sex, current place of detention and length of detention
Det_D03: Number of occurrences of people leaving detention by nationality, age, sex, reason for leaving detention and length of detention
https://assets.publishing.service.gov.uk/media/646357c494f6df0010f5eb0a/returns-datasets-mar-2023.xlsx">Returns (MS Excel Spreadsheet, 14.4 MB)
Ret_D01: Number of returns from the UK, by nationality, age, sex, type of return and return destination group
Ret_D02: Number of returns from the UK, by type of return and country of destination
Ret_D03: Number of foreign national offender returns from the UK, by nationality and return destination group
Ret_D04: Number of foreign national offender returns from the UK, by destination
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, including deaths involving coronavirus (COVID-19), by local authority, health board and place of death in the latest weeks for which data are available. The occurrence tabs in the 2021 edition of this dataset were updated for the last time on 25 October 2022.
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
New reweighting policy
Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.
An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
2022 Weighting
The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.
Latest edition information
For the second edition (February 2025), the data file was resupplied with the 2024 weighting variable included (LGWT24).
This data-set contains all data resources, either directly downloadable via this platform or as links to external databases, to execute the generic modeling tool as described in D5.4
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New London population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of New London across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of New London was 631, a 2.10% increase year-by-year from 2022. Previously, in 2022, New London population was 618, an increase of 0.82% compared to a population of 613 in 2021. Over the last 20 plus years, between 2000 and 2023, population of New London decreased by 11. In this period, the peak population was 743 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New London Population by Year. You can refer the same here
Abstract copyright UK Data Service and data collection copyright owner.The National Survey of Bereaved People (VOICES - Views of Informal Carers - Evaluation of Services) is an annual survey designed to measure the quality of end of life care. The VOICES survey particularly focuses on the last three months of life. Results are used to inform policy decisions and enable evaluation of the quality of end of life care by age group, sex, in different settings (home, hospital, care homes and hospices) and by different causes of death. Quality of end of life care is also included as an indicator in the NHS Outcomes Framework and the VOICES survey is used to monitor progress against this. The Department of Health (DH) first commissioned the survey in 2011 to follow up on a commitment made in the End of Life Care Strategy. Previously, very little systematic information was available about the quality of care delivered to people approaching the end of life, despite reports from the Healthcare Commission and the Neuberger review highlighting deficiencies in care. The commissioning responsibility for the survey moved from DH to NHS England following the restructuring of the Health and Care systems in England in April 2013. Each year a sample of approximately 49,000 adults who died in England is selected from the deaths registration database held by the Office for National Statistics (ONS). To ensure the sample represents the deaths in England for the given period and covers the key domains of interest, the sample is stratified according to the cause of death, place of death and geography. For the 2011 and 2012 surveys, geography was based on Primary Care Trust (PCT) clusters. For the 2013 survey onwards, this is based on NHS Area Teams (NHS Area Team 2013 has also been applied to the earlier datasets). The VOICES questionnaire is sent by post to the person who registered the death of the deceased; this is usually a relative or friend of the deceased. Questionnaires are sent out between 4 and 11 months after the patient has died. As is standard in most postal surveys, if no response is received, this first questionnaire is then followed up with two reminders. Once fieldwork, data capture, cleaning and processing are complete, findings are disseminated at both the national and sub-national level. Further information about the survey and links to related publications may be found on the ONS National Bereavement Survey (VOICES) QMI webpage. End User Licence and Secure Access versions available The UK Data Service holds standard End User Licence (EUL) and Secure Access versions of the National Survey of Bereaved People data. EUL data are available to registered users but Secure Access data are only available to ONS Accredited Researchers (in addition, project approval and successful completion of a stringent training course are required before access can be granted). The Secure Access version contains finer detail variables (e.g. IMD deciles as opposed to quintiles in the EUL data, Strategic Clinical Network in addition to NHS Area Teams, and more detailed information on age, causes, dates and place of death). Users are strongly advised to check whether the EUL data are sufficient for their research needs before making an application for the Secure Access version. Main Topics:Date, cause and place of death; quality and standards of medical, nursing, social and pastoral care in the last three months of life; support for relatives/carers; demographics of deceased person and respondent.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of diabetes mellitus in persons (aged 17+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to diabetes mellitus in persons (aged 17+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 17+) with diabetes mellitus was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with diabetes mellitus was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have diabetes mellitusB) the NUMBER of people within that MSOA who are estimated to have diabetes mellitusAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have diabetes mellitus, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from diabetes mellitus, and where those people make up a large percentage of the population, indicating there is a real issue with diabetes mellitus within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of diabetes mellitus, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of diabetes mellitus.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of hypertension (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to hypertension (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with hypertension was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with hypertension was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with hypertension , within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have hypertension B) the NUMBER of people within that MSOA who are estimated to have hypertension An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have hypertension , compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from hypertension, and where those people make up a large percentage of the population, indicating there is a real issue with hypertension within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of hypertension, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of hypertension .TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Abstract copyright UK Data Service and data collection copyright owner.
The 1970 British Cohort Study (BCS70) is a longitudinal birth cohort study, following a nationally representative sample of over 17,000 people born in England, Scotland and Wales in a single week of 1970. Cohort members have been surveyed throughout their childhood and adult lives, mapping their individual trajectories and creating a unique resource for researchers. It is one of very few longitudinal studies following people of this generation anywhere in the world.
Since 1970, cohort members have been surveyed at ages 5, 10, 16, 26, 30, 34, 38, 42, 46, and 51. Featuring a range of objective measures and rich self-reported data, BCS70 covers an incredible amount of ground and can be used in research on many topics. Evidence from BCS70 has illuminated important issues for our society across five decades. Key findings include how reading for pleasure matters for children's cognitive development, why grammar schools have not reduced social inequalities, and how childhood experiences can impact on mental health in mid-life. Every day researchers from across the scientific community are using this important study to make new connections and discoveries.
BCS70 is run by the Centre for Longitudinal Studies (CLS), a research centre in the UCL Institute of Education, which is part of University College London. The content of BCS70 studies, including questions, topics and variables can be explored via the CLOSER Discovery website.
How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
For information on how to access biomedical data from BCS70 that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.
Secure Access datasets
Secure Access versions of BCS70 have more restrictive access conditions than versions available under the standard End User Licence (EUL).
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Home Office also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
The Home Office has responsibility for fire services in England. The vast majority of data tables produced by the Home Office are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and http://www.nifrs.org/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/6787aa6c2cca34bdaf58a257/fire-statistics-data-tables-fire0101-230125.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 94 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/6787ace93f1182a1e258a25c/fire-statistics-data-tables-fire0102-230125.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.51 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/6787b036868b2b1923b64648/fire-statistics-data-tables-fire0103-230125.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 123 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/6787b3ac868b2b1923b6464d/fire-statistics-data-tables-fire0104-230125.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 295 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/6787b4323f1182a1e258a26a/fire-statistics-data-tables-fire0201-230125.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 111 KB) <a href="https://www.gov.uk/government/statistical-data-sets/fire0201-previous-data-t