100+ datasets found
  1. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(28125832), csv(60517511), csv(75015194), csv(60201673), csv(60676655), csv(74351424), csv(52019564), csv(60023260), csv(74689382), csv(51592721), csv(73906266), csv(15127221), csv(1128641), csv(5095), csv(11738570), zip, csv(74043128), csv(24235858), csv(74497014), csv(21575405)Available download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  2. M

    World Death Rate (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Death Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/death-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    World, World
    Description

    Historical chart and dataset showing World death rate by year from 1950 to 2025.

  3. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  4. Statewide Death Profiles

    • data.chhs.ca.gov
    • healthdata.gov
    • +3more
    csv, zip
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(164006), csv(200270), csv(5401561), csv(463460), csv(5034), csv(4689434), csv(419332), csv(364098), zipAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  5. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 14, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  6. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  7. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  9. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +3more
    csv, docx, html, xlsx
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, xlsx, htmlAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  10. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 12, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Jul 4, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON JULY 12

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  11. Causes of Death in World

    • kaggle.com
    Updated Sep 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamadreza Momeni (2023). Causes of Death in World [Dataset]. https://www.kaggle.com/imtkaggleteam/causes-of-death-in-world/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 7, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohamadreza Momeni
    Area covered
    World
    Description

    What are people dying from?

    This question is essential to guide decisions in public health, and find ways to save lives.

    Many leading causes of death receive little mainstream attention. If news reports reflected what children died from, they would say that around 1,400 young children die from diarrheal diseases, 1,000 die from malaria, and 1,900 from respiratory infections – every day.

    This can change. Over time, death rates from these causes have declined across the world.

    A better understanding of the causes of death has led to the development of technologies, preventative measures, and better healthcare, reducing the chances of dying from a wide range of different causes, across all age groups.

    In the past, infectious diseases dominated. But death rates from infectious diseases have fallen quickly – faster than other causes. This has led to a shift in the leading causes of death. Now, non-communicable diseases – such as heart diseases and cancers – are the most common causes of death globally.

    More progress is possible, and the impact of causes of death can fall further.

    On this page, you will find global data and research on leading causes of death and how they can be prevented.

    This data can also help understand the burden of disease more broadly, and offer a lens to see the impacts of healthcare and medicine, habits and behaviours, environmental factors, health infrastructure, and more.

    By Saloni Dattani, Fiona Spooner, Hannah Ritchie and Max Roser

  12. World Population & Health Data 2014 - 2024

    • kaggle.com
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faizal Rosyid (2025). World Population & Health Data 2014 - 2024 [Dataset]. https://www.kaggle.com/datasets/faizalrosyid/world-population-and-health-data-2014-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Kaggle
    Authors
    Faizal Rosyid
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.

    Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.

    Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.

  13. COVID-19 Worldwide Daily Data

    • kaggle.com
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 28, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  14. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  15. Deaths from malnutrition

    • kaggle.com
    Updated Jun 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira gibin (2024). Deaths from malnutrition [Dataset]. http://doi.org/10.34740/kaggle/dsv/8642249
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Kaggle
    Authors
    willian oliveira gibin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in R:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F99ddcc7060665597ad9b1c263aa8174d%2Fgraph1.gif?generation=1717872782993200&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff7af5fc372d601a18645c41c37411157%2Fgraph2.gif?generation=1717872788516258&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc85d9de1d5b88949298afa0bab1d9406%2Fgraph3.gif?generation=1717872793749722&alt=media" alt="">

    Having enough to eat is one of the fundamental basic human needs. Hunger – or, more formally, undernourishment – is defined as eating less than the energy required to maintain an active and healthy life.

    The share of undernourished people is the leading indicator for food security and nutrition used by the Food and Agriculture Organization of the United Nations.

    The fight against hunger focuses on a sufficient energy intake – enough calories per person per day. But it is not the only factor that matters for a healthy diet. Sufficient protein, fats, and micronutrients are also essential, and we cover this in our topic page on micronutrient deficiencies.

    Undernourishment in mothers and children is a leading risk factor for death and other poor health outcomes.

    The UN has set a global target as part of the Sustainable Development Goals to “end hunger by 2030“. While the world has progressed in past decades, we are far from reaching this target.

    On this page, you can find our data, visualizations, and writing on hunger and undernourishment. It looks at how many people are undernourished, where they are, and other metrics used to track food security.

    Hunger – also known as undernourishment – is defined as not consuming enough calories to maintain a normal, active, healthy life.

    The world has made much progress in reducing global hunger in recent decades — we will see this in the following key insight. But we are still far away from an end to hunger. Tragically, nearly one-in-ten people still do not get enough food to eat.

    The share of the undernourished population is shown globally and by region in the chart.

    You can see that rates of hunger are highest in Sub-Saharan Africa. South Asia has much higher rates than the Americas and East Asia. Rates in North America and Europe are below 2.5%. However, the FAO shows this as “2.5%” rather than the specific point estimate.

  16. A

    ‘COVID vaccination vs. mortality ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘COVID vaccination vs. mortality ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-vaccination-vs-mortality-cbd8/06c8ccd2/?iid=010-492&v=presentation
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID vaccination vs. mortality ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sinakaraji/covid-vaccination-vs-death on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    The COVID-19 outbreak has brought the whole planet to its knees.More over 4.5 million people have died since the writing of this notebook, and the only acceptable way out of the disaster is to vaccinate all parts of society. Despite the fact that the benefits of vaccination have been proved to the world many times, anti-vaccine groups are springing up all over the world. This data set was generated to investigate the impact of coronavirus vaccinations on coronavirus mortality.

    Content

    countryiso_codedatetotal_vaccinationspeople_vaccinatedpeople_fully_vaccinatedNew_deathspopulationratio
    country nameiso code for each countrydate that this data belongnumber of all doses of COVID vaccine usage in that countrynumber of people who got at least one shot of COVID vaccinenumber of people who got full vaccine shotsnumber of daily new deaths2021 country population% of vaccinations in that country at that date = people_vaccinated/population * 100

    Data Collection

    This dataset is a combination of the following three datasets:

    1.https://www.kaggle.com/gpreda/covid-world-vaccination-progress

    2.https://covid19.who.int/WHO-COVID-19-global-data.csv

    3.https://www.kaggle.com/rsrishav/world-population

    you can find more detail about this dataset by reading this notebook:

    https://www.kaggle.com/sinakaraji/simple-linear-regression-covid-vaccination

    Countries in this dataset:

    AfghanistanAlbaniaAlgeriaAndorraAngola
    AnguillaAntigua and BarbudaArgentinaArmeniaAruba
    AustraliaAustriaAzerbaijanBahamasBahrain
    BangladeshBarbadosBelarusBelgiumBelize
    BeninBermudaBhutanBolivia (Plurinational State of)Brazil
    Bosnia and HerzegovinaBotswanaBrunei DarussalamBulgariaBurkina Faso
    CambodiaCameroonCanadaCabo VerdeCayman Islands
    Central African RepublicChadChileChinaColombia
    ComorosCook IslandsCosta RicaCroatiaCuba
    CuraçaoCyprusDenmarkDjiboutiDominica
    Dominican RepublicEcuadorEgyptEl SalvadorEquatorial Guinea
    EstoniaEthiopiaFalkland Islands (Malvinas)FijiFinland
    FranceFrench PolynesiaGabonGambiaGeorgia
    GermanyGhanaGibraltarGreeceGreenland
    GrenadaGuatemalaGuineaGuinea-BissauGuyana
    HaitiHondurasHungaryIcelandIndia
    IndonesiaIran (Islamic Republic of)IraqIrelandIsle of Man
    IsraelItalyJamaicaJapanJordan
    KazakhstanKenyaKiribatiKuwaitKyrgyzstan
    Lao People's Democratic RepublicLatviaLebanonLesothoLiberia
    LibyaLiechtensteinLithuaniaLuxembourgMadagascar
    MalawiMalaysiaMaldivesMaliMalta
    MauritaniaMauritiusMexicoRepublic of MoldovaMonaco
    MongoliaMontenegroMontserratMoroccoMozambique
    MyanmarNamibiaNauruNepalNetherlands
    New CaledoniaNew ZealandNicaraguaNigerNigeria
    NiueNorth MacedoniaNorwayOmanPakistan
    occupied Palestinian territory, including east Jerusalem
    PanamaPapua New GuineaParaguayPeruPhilippines
    PolandPortugalQatarRomaniaRussian Federation
    RwandaSaint Kitts and NevisSaint Lucia
    Saint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi Arabia
    SenegalSerbiaSeychellesSierra LeoneSingapore
    SlovakiaSloveniaSolomon IslandsSomaliaSouth Africa
    Republic of KoreaSouth SudanSpainSri LankaSudan
    SurinameSwedenSwitzerlandSyrian Arab RepublicTajikistan
    United Republic of TanzaniaThailandTogoTongaTrinidad and Tobago
    TunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvalu
    UgandaUkraineUnited Arab EmiratesThe United KingdomUnited States of America
    UruguayUzbekistanVanuatuVenezuela (Bolivarian Republic of)Viet Nam
    Wallis and FutunaYemenZambiaZimbabwe

    --- Original source retains full ownership of the source dataset ---

  17. A

    ‘The Lost Journalists: Dataset of journalist deaths’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘The Lost Journalists: Dataset of journalist deaths’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-the-lost-journalists-dataset-of-journalist-deaths-eb66/f982f2d4/?iid=004-934&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘The Lost Journalists: Dataset of journalist deaths’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/journalist-deathse on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Credit for the original dataset goes to CPJ

    About this dataset

    In-the-News:

    https://data.world/api/journalism/dataset/journalist-deaths/file/raw/journalist_deaths_by_year.png" alt="journalist_deaths_by_year.png">

    Methodology

    CPJ began compiling detailed records on journalist deaths in 1992. We apply strict journalistic standards when investigating a death. One important aspect of our research is determining whether a death was work-related. As a result, we classify deaths as "motive confirmed" or "motive unconfirmed."

    We consider a case "confirmed" only if we are reasonably certain that a journalist was murdered in direct reprisal for his or her work; was killed in crossfire during combat situations; or was killed while carrying out a dangerous assignment such as coverage of a street protest. We do not include journalists who are killed in accidents such as car or plane crashes.

    We include only confirmed cases in the statistical analyses in this database.

    When the motive is unclear, but it is possible that a journalist was killed because of his or her work, CPJ classifies the case as "unconfirmed" and continues to investigate. We regularly reclassify cases based on our ongoing research.

    Our archives include narrative capsules of all journalists killed, including the cases in which the motive is unconfirmed. In cases where the place of death is incidental to the journalist's killing, we have listed the country where the fatal attack occurred to be the place of the journalist's death (for example, in a case where a journalist is hit by shrapnel in one country and evacuated to another, where he or she dies, CPJ lists the country in which he or she was hit as the place of death).

    CPJ defines journalists as people who cover news or comment on public affairs through any media -- including in print, in photographs, on radio, on television, and online. We take up cases involving staff journalists, freelancers, stringers, bloggers, and citizen journalists. The combination of daily reporting and statistical data forms the basis of our case-driven and long-term advocacy.

    In 2003, CPJ began documenting the deaths of media support workers. We did so in recognition of the vital role these individuals play in newsgathering. These workers include translators, drivers, fixers, and administrative workers.

    Our archives include narrative capsules for media workers killed on duty. These cases are not included our statistical analyses.

    About CPJ

    The Committee to Protect Journalists is an independent, nonprofit organization that promotes press freedom worldwide. We defend the right of journalists to report the news without fear of reprisal.

    Additional Reading
    Investigative journalism in Africa – “Walking through a minefield at midnight”
    Iraq: The deadliest war for journalists
    Being a journalist in Mexico is getting even more dangerous

    Source: Committee to Protect Journalists

    This dataset was created by Journalism, News, and Media and contains around 2000 samples along with Date, Unnamed: 18, technical information and other features such as: - Local/ Foreign - Unnamed: 20 - and more.

    How to use this dataset

    • Analyze Coverage in relation to Taken Captive
    • Study the influence of Organization on Unnamed: 21
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Journalism, News, and Media

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  18. WHO-COVID-19-GLOBAL-CASES-DEATHS

    • kaggle.com
    Updated Mar 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amadou Barry (2023). WHO-COVID-19-GLOBAL-CASES-DEATHS [Dataset]. https://www.kaggle.com/datasets/amadubarry/who-covid-19-global-cases-deaths
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    Kaggle
    Authors
    Amadou Barry
    Description

    Daily cases and deaths by date reported to World Health Organization. the schema of the dataset is below: Field name Type Description

    Date_reported Date Date of reporting to WHO

    Country_code String ISO Alpha-2 country code

    Country String Country, territory, area

    WHO_region String WHO regional offices: WHO Member States are grouped into six WHO regions -- Regional Office for Africa (AFRO), Regional Office for the Americas (AMRO), Regional Office for South-East Asia (SEARO), Regional Office for Europe (EURO), Regional Office for the Eastern Mediterranean (EMRO), and Regional Office for the Western Pacific (WPRO).

    New_cases Integer New confirmed cases. Calculated by subtracting previous cumulative case count from current cumulative cases count.*

    Cumulative_cases Integer Cumulative confirmed cases reported to WHO to date.

    New_deaths Integer New confirmed deaths. Calculated by subtracting previous cumulative deaths from current cumulative deaths.*

    Cumulative_deaths Integer Cumulative confirmed deaths reported to WHO to date.

  19. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  20. M

    Russia Death Rate (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Russia Death Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/rus/russia/death-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    Russia
    Description

    Historical chart and dataset showing Russia death rate by year from 1950 to 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county

Death Profiles by County

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
csv(28125832), csv(60517511), csv(75015194), csv(60201673), csv(60676655), csv(74351424), csv(52019564), csv(60023260), csv(74689382), csv(51592721), csv(73906266), csv(15127221), csv(1128641), csv(5095), csv(11738570), zip, csv(74043128), csv(24235858), csv(74497014), csv(21575405)Available download formats
Dataset updated
May 28, 2025
Dataset authored and provided by
California Department of Public Health
Description

This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

Search
Clear search
Close search
Google apps
Main menu