By Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...
Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Mortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.
Age standardized rate of cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 17.500 NA in 2016. This records an increase from the previous number of 17.200 NA for 2015. US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 17.500 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 21.600 NA in 2000 and a record low of 17.200 NA in 2015. US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive one year after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
One-year and five-year net survival for adults (15-99) in England diagnosed with one of 29 common cancers, by age and sex.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Directly standardised mortality rate from cancer for people aged under 75, per 100,000 population. Purpose To ensure that the NHS is held to account for doing all that it can to prevent deaths from cancer in people under 75. Current version updated: Feb-17 Next version due: Nov-17
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive five years after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of cancer mortality statistics in Australia for all cancers combined and the 6 top cancer groupings (colorectal, leukaemia, lung, lymphoma, melanoma of the skin and pancreas) and their respective ICD-10 codes. The data spans the years 2009-2013 and is aggregated to Greater Capital City Statistical Areas (GCCSA) from the 2011 Australian Statistical Geography Standard (ASGS).
Mortality data refer to the number of deaths due to cancer in a given time period. Cancer deaths data are sourced from the Australian Institute of Health and Welfare (AIHW) 2013 National Mortality Database (NMD).
For further information about this dataset, please visit:
Please note:
AURIN has spatially enabled the original data.
Due to changes in geographic classifications over time, long-term trends are not available.
Values assigned to "n.p." in the original data have been removed from the data.
The Australian and jurisdictional totals include people who could not be assigned a GCCSA. The number of people who could not be assigned a GCCSA is less than 1% of the total.
The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory).
Cause of Death Unit Record File data are provided to the AIHW by the Registries of Births, Deaths and Marriages and the National Coronial Information System (managed by the Victorian Department of Justice) and include cause of death coded by the Australian Bureau of Statistics (ABS). The data are maintained by the AIHW in the NMD.
Year refers to year of occurrence of death for years up to and including 2012, and year of registration of death for 2013. Deaths registered in 2011 and earlier are based on the final version of cause of death data; deaths registered in 2012 and 2013 are based on revised and preliminary versions, respectively and are subject to further revision by the ABS.
Cause of death information are based on underlying cause of death and are classified according to the International Classification of Diseases and Related Health Problems (ICD). Deaths registered in 1997 onwards are classified according to the 10th revision (ICD-10).
Colorectal deaths presented are underestimates. For further information, refer to "Complexities in the measurement of bowel cancer in Australia" in Causes of Death, Australia (ABS cat. no. 3303.0).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer incidence rates since 1984 to the most recent diagnosis year. The table includes a selection of commonly diagnosed invasive cancers, as well as in situ bladder cancer. Cases are defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3) from 1992 to the most recent data year and on the International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1991.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 20.900 NA in 2016. This records an increase from the previous number of 20.800 NA for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 21.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 22.600 NA in 2000 and a record low of 20.800 NA in 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive five years after diagnosis.
Purpose
This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer.
Current version updated: Feb-17
Next version due: Feb-18
By Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...