55 datasets found
  1. m

    An Extensive Dataset for the Heart Disease Classification System

    • data.mendeley.com
    Updated Feb 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sozan S. Maghdid (2022). An Extensive Dataset for the Heart Disease Classification System [Dataset]. http://doi.org/10.17632/65gxgy2nmg.2
    Explore at:
    Dataset updated
    Feb 17, 2022
    Authors
    Sozan S. Maghdid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Finding a good data source is the first step toward creating a database. Cardiovascular illnesses (CVDs) are the major cause of death worldwide. CVDs include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other heart and blood vessel problems. According to the World Health Organization, 17.9 million people die each year. Heart attacks and strokes account for more than four out of every five CVD deaths, with one-third of these deaths occurring before the age of 70. A comprehensive database for factors that contribute to a heart attack has been constructed. The main purpose here is to collect characteristics of Heart Attack or factors that contribute to it. The size of the dataset is 1319 samples, which have nine fields, where eight fields are for input fields and one field for an output field. Age, gender, heart rate (impulse), systolic BP (pressurehight), diastolic BP (pressurelow), blood sugar(glucose), CK-MB (kcm), and Test-Troponin (troponin) are representing the input fields, while the output field pertains to the presence of heart attack (class), which is divided into two categories (negative and positive); negative refers to the absence of a heart attack, while positive refers to the presence of a heart attack.

  2. e

    GP recorded coronary heart disease rates

    • data.europa.eu
    html
    Updated Mar 20, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leeds City Council (2015). GP recorded coronary heart disease rates [Dataset]. https://data.europa.eu/88u/dataset/gp-recorded-chd-rates
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 20, 2015
    Dataset authored and provided by
    Leeds City Council
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    A dataset providing GP recorded coronary heart disease.

    Coronary heart disease (CHD) is the leading cause of death both in the UK and worldwide.

    It's responsible for more than 73,000 deaths in the UK each year. About 1 in 6 men and 1 in 10 women die from CHD.

    In the UK, there are an estimated 2.3 million people living with CHD and around 2 million people affected by http://www.nhs.uk/conditions/Angina/Pages/Introduction.aspx">angina (the most common symptom of coronary heart disease).

    CHD generally affects more men than women, although from the age of 50 the chances of developing the condition are similar for both sexes.

    As well as angina (chest pain), the main symptoms of CHD are http://www.nhs.uk/conditions/heart-attack/Pages/Introduction.aspx">heart attacks and http://www.nhs.uk/conditions/Heart-failure/Pages/Introduction.aspx">heart failure. However, not everyone has the same symptoms and some people may not have any before CHD is diagnosed.

    CHD is sometimes called ischaemic heart disease.

  3. l

    Data from: Coronary Heart Disease Mortality

    • data.lacounty.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Coronary Heart Disease Mortality [Dataset]. https://data.lacounty.gov/datasets/coronary-heart-disease-mortality/about
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Coronary heart disease is a type of heart disease in which the arteries of the heart cannot deliver enough oxygen-rich blood to the heart muscles. Over time, this can weaken the heart muscle and may lead to heart attack or heart failure. It is the most common type of heart disease in the US and has been the leading cause of death in Los Angeles County for the last two decades. Poor diet, sedentary lifestyle, tobacco exposure, and chronic stress are all important risk factors for coronary heart disease. Cities and communities can mitigate these risks by improving local food environments and encouraging physical activity by making communities safer and more walkable.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  4. O

    SHIP Age-Adjusted Mortality Rate From Heart Disease 2009-2021

    • opendata.maryland.gov
    • datasets.ai
    • +2more
    application/rdfxml +5
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MDH Vital Statistics Administration (VSA) (2024). SHIP Age-Adjusted Mortality Rate From Heart Disease 2009-2021 [Dataset]. https://opendata.maryland.gov/Health-and-Human-Services/SHIP-Age-Adjusted-Mortality-Rate-From-Heart-Diseas/e3du-cv4i
    Explore at:
    application/rdfxml, tsv, application/rssxml, json, csv, xmlAvailable download formats
    Dataset updated
    Feb 22, 2024
    Dataset authored and provided by
    MDH Vital Statistics Administration (VSA)
    Description

    This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024

    Age-Adjusted Mortality Rate From Heart Disease - This indicator shows the age-adjusted mortality rate from heart disease (per 100,000 population). Heart disease is the leading cause of death in Maryland accounting for 25% of all deaths. Between 2012-2014, over 30,000 people died of heart disease in Maryland. https://health.maryland.gov/pophealth/Documents/SHIP/SHIP%20Lite%20Data%20Details/Age-Adjusted%20Heart%20Disease.pdf" > Link to Data Details

  5. p

    Heart Failure Prediction - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Heart Failure Prediction - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/heart-failure-prediction
    Explore at:
    Dataset updated
    Oct 8, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worlwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. Most cardiovascular diseases can be prevented by addressing behavioural risk factors such as tobacco use, unhealthy diet and obesity, physical inactivity and harmful use of alcohol using population-wide strategies. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help.

  6. m

    Cardiovascular_Disease_Dataset

    • data.mendeley.com
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhanu Prakash Doppala (2021). Cardiovascular_Disease_Dataset [Dataset]. http://doi.org/10.17632/dzz48mvjht.1
    Explore at:
    Dataset updated
    Apr 16, 2021
    Authors
    Bhanu Prakash Doppala
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This heart disease dataset is acquired from one o f the multispecialty hospitals in India. Over 14 common features which makes it one of the heart disease dataset available so far for research purposes. This dataset consists of 1000 subjects with 12 features. This dataset will be useful for building a early-stage heart disease detection as well as to generate predictive machine learning models.

  7. c

    Coronary heart disease (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Coronary heart disease (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/items/832de0122e4b4bba9ff69cadc1bf53c4
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of coronary heart disease (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to coronary heart disease (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with coronary heart disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with coronary heart disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with coronary heart disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have coronary heart diseaseB) the NUMBER of people within that MSOA who are estimated to have coronary heart diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have coronary heart disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from coronary heart disease, and where those people make up a large percentage of the population, indicating there is a real issue with coronary heart disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of coronary heart disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of coronary heart disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  8. d

    1.1 Under 75 mortality rate from cardiovascular disease

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Mar 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 1.1 Under 75 mortality rate from cardiovascular disease [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/nhs-outcomes-framework/march-2022
    Explore at:
    csv(148.2 kB), pdf(860.1 kB), xlsx(239.1 kB), pdf(225.4 kB)Available download formats
    Dataset updated
    Mar 17, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2003 - Dec 31, 2020
    Area covered
    England
    Description

    Update 2 March 2023: Following the merger of NHS Digital and NHS England on 1st February 2023 we are reviewing the future presentation of the NHS Outcomes Framework indicators. As part of this review, the annual publication which was due to be released in March 2023 has been delayed. Further announcements about this dataset will be made on this page in due course. Directly standardised mortality rate from cardiovascular disease for people aged under 75, per 100,000 population. To ensure that the NHS is held to account for doing all that it can to prevent deaths from cardiovascular disease in people under 75. Some different patterns have been observed in the 2020 mortality data which are likely to have been impacted by the coronavirus (COVID-19) pandemic. Statistics from this period should also be interpreted with care. Legacy unique identifier: P01730

  9. A

    ‘SHIP Age-Adjusted Mortality Rate From Heart Disease 2009-2017’ analyzed by...

    • analyst-2.ai
    Updated Aug 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘SHIP Age-Adjusted Mortality Rate From Heart Disease 2009-2017’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-ship-age-adjusted-mortality-rate-from-heart-disease-2009-2017-9b12/ddfd065b/?iid=002-260&v=presentation
    Explore at:
    Dataset updated
    Aug 5, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘SHIP Age-Adjusted Mortality Rate From Heart Disease 2009-2017’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/6c52d400-0556-44e1-9286-3e3507ea39aa on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    Age-Adjusted Mortality Rate From Heart Disease - This indicator shows the age-adjusted mortality rate from heart disease (per 100,000 population). Heart disease is the leading cause of death in Maryland accounting for 25% of all deaths. Between 2012-2014, over 30,000 people died of heart disease in Maryland.

    --- Original source retains full ownership of the source dataset ---

  10. K

    Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30...

    • ceicdata.com
    Updated Oct 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 [Dataset]. https://www.ceicdata.com/en/kenya/health-statistics/ke-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2015
    Area covered
    Kenya
    Description

    Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 13.400 % in 2016. This records an increase from the previous number of 13.300 % for 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 13.400 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 17.300 % in 2000 and a record low of 13.300 % in 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;

  11. I

    Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact...

    • ceicdata.com
    Updated May 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male [Dataset]. https://www.ceicdata.com/en/ivory-coast/health-statistics/ci-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-male
    Explore at:
    Dataset updated
    May 12, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Côte d'Ivoire
    Description

    Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 28.200 NA in 2016. This records a decrease from the previous number of 28.500 NA for 2015. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 27.700 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 28.500 NA in 2015 and a record low of 25.200 NA in 2000. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ivory Coast – Table CI.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  12. d

    Mortality Rates

    • catalog.data.gov
    • data.amerigeoss.org
    • +3more
    Updated Nov 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Mortality Rates [Dataset]. https://catalog.data.gov/dataset/mortality-rates-6fb72
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Mortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.

  13. BRFSS 2020 Heart Disease Dataset(Cleaned Version)

    • zenodo.org
    csv
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Koushal Kumar; BP Pande; Koushal Kumar; BP Pande (2025). BRFSS 2020 Heart Disease Dataset(Cleaned Version) [Dataset]. http://doi.org/10.5281/zenodo.15364962
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Koushal Kumar; BP Pande; Koushal Kumar; BP Pande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Originally, the dataset come from the CDC and is a major part of the Behavioral Risk Factor Surveillance System (BRFSS), which conducts annual telephone surveys to gather data on the health status of U.S. residents. As the CDC describes: "Established in 1984 with 15 states, BRFSS now collects data in all 50 states as well as the District of Columbia and three U.S. territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world.". The most recent dataset (as of February 15, 2022) includes data from 2020. It consists of 401,958 rows and 279 columns. The vast majority of columns are questions asked to respondents about their health status, such as "Do you have serious difficulty walking or climbing stairs?" or "Have you smoked at least 100 cigarettes in your entire life? [Note: 5 packs = 100 cigarettes]".

    To improve the efficiency and relevance of our analysis, we removed certain attributes from the original BRFSS dataset. Many of the 279 original attributes included administrative codes, metadata, or survey-specific variables that do not contribute meaningfully to heart disease prediction—such as respondent IDs, timestamps, state-level identifiers, and detailed lifestyle questions unrelated to cardiovascular health. By focusing on a carefully selected subset of 18 attributes directly linked to medical, behavioral, and demographic factors known to influence heart health, we streamlined the dataset. This not only reduced computational complexity but also improved model interpretability and performance by eliminating noise and irrelevant information. All predicting variables could be divided into 4 broad categories:

    1. Demographic factors: sex, age category (14 levels), race, BMI (Body Mass Index)

    2. Diseases: weather respondent ever had such diseases as asthma, skin cancer, diabetes, stroke or kidney disease (not including kidney stones, bladder infection or incontinence)

    3. Unhealthy habits:

      • Smoking - respondents that smoked at least 100 cigarettes in their entire life (5 packs = 100 cigarettes)
      • Alcohol Drinking - heavy drinkers (adult men having more than 14 drinks per week and adult women having more than 7 drinks per week
    4. General Health:

      • Difficulty Walking - weather respondent have serious difficulty walking or climbing stairs
      • Physical Activity - adults who reported doing physical activity or exercise during the past 30 days other than their regular job
      • Sleep Time - respondent’s reported average hours of sleep in a 24-hour period
      • Physical Health - number of days being physically ill or injured (0-30 days)
      • Mental Health - number of days having bad mental health (0-30 days)
      • General Health - respondents declared their health as ’Excellent’, ’Very good’, ’Good’ ,’Fair’ or ’Poor’

    Below is a description of the features collected for each patient:

    <td style="width:

    S. No.

    Original Variable/Attribute

    Coded Variable/Attribute

    Interpretation

    1.

    CVDINFR4

    HeartDisease

    Those who have ever had CHD or myocardial infarction

    2.

    _BMI5CAT

    BMI

    Body Mass Index

    3.

    _SMOKER3

    Smoking

    Have you ever smoked more than 100 cigarettes in your life? (The answer is either yes or no)

    4.

    _RFDRHV7

    AlcoholDrinking

    Adult men who drink more than 14 drinks per week and adult women who consume more than 7 drinks per week are considered heavy drinkers

    5.

    CVDSTRK3

    Stroke

    (Ever told) (you had) a stroke?

    6.

    PHYSHLTH

    PhysicalHealth

    It includes physical illness and injury during the past 30 days

    7.

    MENTHLTH

    MentalHealth

    How many days in the last 30 days have you had poor mental health?

    8.

    DIFFWALK

    DiffWalking

    Are you having trouble walking or climbing stairs?

    9.

    SEXVAR

    Sex

    Are you male or female?

    10.

    _AGE_G

    AgeCategory

    Out of given fourteen age groups, which group do you fall into?

  14. Deaths, by cause, Chapter IX: Diseases of the circulatory system (I00 to...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths, by cause, Chapter IX: Diseases of the circulatory system (I00 to I99) [Dataset]. http://doi.org/10.25318/1310014701-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths caused by diseases of the circulatory system, by age group and sex, 2000 to most recent year.

  15. A

    ‘Heart Failure Prediction’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Heart Failure Prediction’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-heart-failure-prediction-c926/1b358936/?iid=010-637&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Heart Failure Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/andrewmvd/heart-failure-clinical-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worlwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure.

    Most cardiovascular diseases can be prevented by addressing behavioural risk factors such as tobacco use, unhealthy diet and obesity, physical inactivity and harmful use of alcohol using population-wide strategies.

    People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help.

    How to use this dataset

    • Create a model for predicting mortality caused by Heart Failure.
    • Your kernel can be featured here!
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit the authors

    Citation

    Davide Chicco, Giuseppe Jurman: Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). (link)

    License

    CC BY 4.0

    Splash icon

    Icon by Freepik, available on Flaticon.

    Splash banner

    Wallpaper by jcomp, available on Freepik.

    --- Original source retains full ownership of the source dataset ---

  16. N

    Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages...

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male [Dataset]. https://www.ceicdata.com/en/nigeria/health-statistics/ng-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-male
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Nigeria
    Description

    Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 20.900 NA in 2016. This records an increase from the previous number of 20.800 NA for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 21.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 22.600 NA in 2000 and a record low of 20.800 NA in 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  17. Data Science for Good: WHO NCDs Dataset

    • kaggle.com
    Updated Jun 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beni Vitai (2020). Data Science for Good: WHO NCDs Dataset [Dataset]. https://www.kaggle.com/benivitai/ncd-who-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Beni Vitai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    In the shadows of the Covid-19 pandemic, there is another global health crisis that has gone largely unnoticed. This is the Noncommunicable Disease (NCD) pandemic.

    The WHO website describes NCDs as follows:

    Noncommunicable diseases (NCDs), also known as chronic diseases, tend to be of long duration and are the result of a combination of genetic, physiological, environmental and behaviours factors.

    The main types of NCDs are cardiovascular diseases (like heart attacks and stroke), cancers, chronic respiratory diseases (such as chronic obstructive pulmonary disease and asthma) and diabetes.

    NCDs disproportionately affect people in low- and middle-income countries where more than three quarters of global NCD deaths – 32million – occur.

    Key facts:

    • Noncommunicable diseases (NCDs) kill 41 million people each year, equivalent to 71% of all deaths globally.
    • Each year, 15 million people die from a NCD between the ages of 30 and 69 years; over 85% of these "premature" deaths occur in low- and middle-income > * countries.
    • Cardiovascular diseases account for most NCD deaths, or 17.9 million people annually, followed by cancers (9.0 million), respiratory diseases (3.9million), and diabetes (1.6 million).
    • These 4 groups of diseases account for over 80% of all premature NCD deaths.
    • Tobacco use, physical inactivity, the harmful use of alcohol and unhealthy diets all increase the risk of dying from a NCD.
    • Detection, screening and treatment of NCDs, as well as palliative care, are key components of the response to NCDs.

    Content

    This data repository consists of 3 CSV files: WHO-cause-of-death-by-NCD.csv is the main dataset, which provides the percentage of deaths caused by NCDs out of all causes of death, for each nation globally. Metadata_Country.csv and Metadata_Indicator.csv provide additional metadata which is helpful for interpreting the main CSV.

    The data collected spans a period from 2000 to 2016. The main CSV has columns for every year from 1960 to 2019. It is advisable to drop all redundant columns where no data was collected.

    Furthermore, it is advisable to merge Metadata_Country.csv with the main CSV as it provides valuable additional information, particularly on the economic situation of each nation.

    Acknowledgements

    This dataset has been extracted from The World Bank 'Cause of death, by non-communicable diseases (% of total)' Dataset, derived based on the data from WHO's Global Health Estimates. It is freely provided under a Creative Commons Attribution 4.0 International License (CC BY 4.0), with the additional terms as stated on the World Bank website: World Bank Terms of Use for Datasets.

    Inspiration

    I would be interested to see some good data wrangling (dropping redundant columns), as well as kernels interpreting additional information in 'SpecialNotes' column in Metadata_country.csv

    It would also be great to see what different factors influence NCDs: most of all, the geopolitical factors. Would be great to see some choropleth visualisations to get an idea of which regions are most affected by NCDs.

  18. m

    ECG Images dataset of Cardiac Patients

    • data.mendeley.com
    Updated Mar 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Haider Khan (2021). ECG Images dataset of Cardiac Patients [Dataset]. http://doi.org/10.17632/gwbz3fsgp8.2
    Explore at:
    Dataset updated
    Mar 19, 2021
    Authors
    Ali Haider Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ECG images dataset of Cardiac Patients created under the auspices of Ch. Pervaiz Elahi Institute of Cardiology Multan, Pakistan that aims to help the scientific community for conducting the research for Cardiovascular diseases.

  19. Policy Radar - Coronary Heart Disease Prevalence

    • data-insight-tfwm.hub.arcgis.com
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transport for West Midlands (2021). Policy Radar - Coronary Heart Disease Prevalence [Dataset]. https://data-insight-tfwm.hub.arcgis.com/items/70bfa5326030480e9c0d086c07b63ab0
    Explore at:
    Dataset updated
    Nov 17, 2021
    Dataset authored and provided by
    Transport for West Midlandshttp://www.tfwm.org.uk/
    Description

    Utilising a regression analysis we created a correlation matrix utilising a number of demographic indicators from the Local Insight platform. This application is showing the distribution of the datasets that were found to have the strongest relationships, with the base comparison dataset of prevalence of coronary heart disease. This app contains the following datasets: prevalence of high blood pressure, prevalence of stroke and transient ischaemic attack, prevalence of rheumatoid arthritis, prevalence of heart failure, proportion of people in construction industrial sector employment, proportion of households where members are from different ethnic groups, proportion of people born in 'old' European Union countries, percentage of people with back pain, proportion of people born in England and proportion of people with non-EU passports

  20. Deaths from diseases of the heart

    • data-sccphd.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Deaths from diseases of the heart [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/deaths-from-diseases-of-the-heart/about
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of death from diseases of the heart by sex, race/ethnicity, age; trends if available. Source: Santa Clara County Public Health Department, VRBIS, 2007-2016. Data as of 05/26/2017; U.S. Census Bureau; 2010 Census, Tables PCT12, PCT12H, PCT12I, PCT12J, PCT12K, PCT12L, PCT12M; generated by Baath M.; using American FactFinder; Accessed June 20, 2017. METADATA:Notes (String): Lists table title, notes and sourcesYear (Numeric): Year of dataCategory (String): Lists the category representing the data: Santa Clara County is for total population, sex: Male and Female, race/ethnicity: African American, Asian/Pacific Islander, Latino and White (non-Hispanic White only); age categories as follows: <1, 1 to 4, 5 to 14, 15 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74, 75 to 84, 85+; United StatesRate per 100,000 people (Numeric): Rate of deaths from diseases of the heart. Rates for age groups are reported as age-specific rates per 100,000 people. All other rates are age-adjusted rates per 100,000 people.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sozan S. Maghdid (2022). An Extensive Dataset for the Heart Disease Classification System [Dataset]. http://doi.org/10.17632/65gxgy2nmg.2

An Extensive Dataset for the Heart Disease Classification System

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 17, 2022
Authors
Sozan S. Maghdid
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Finding a good data source is the first step toward creating a database. Cardiovascular illnesses (CVDs) are the major cause of death worldwide. CVDs include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other heart and blood vessel problems. According to the World Health Organization, 17.9 million people die each year. Heart attacks and strokes account for more than four out of every five CVD deaths, with one-third of these deaths occurring before the age of 70. A comprehensive database for factors that contribute to a heart attack has been constructed. The main purpose here is to collect characteristics of Heart Attack or factors that contribute to it. The size of the dataset is 1319 samples, which have nine fields, where eight fields are for input fields and one field for an output field. Age, gender, heart rate (impulse), systolic BP (pressurehight), diastolic BP (pressurelow), blood sugar(glucose), CK-MB (kcm), and Test-Troponin (troponin) are representing the input fields, while the output field pertains to the presence of heart attack (class), which is divided into two categories (negative and positive); negative refers to the absence of a heart attack, while positive refers to the presence of a heart attack.

Search
Clear search
Close search
Google apps
Main menu